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Abstract

Aigner characterized in terms of forbidden subgraphs all graphs whose
line graphs are graphs of semi-orders. We determine all graphs whose
line graphs (middle graphs, total graphs, respectively) are graphs of semi-
orders.
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1 Introduction

By a graph we mean a simple graph G = (V, E) with vertex set V(G) = V
and edge set E(G) = E. If v is a vertex of a graph G, then Ng(v) denotes the
neighborhood of v in G, that is, the set of vertices adjacent to v. The degree of
a vertex v, denoted by dg(v), is the cardinality of its neighborhood.

A binary relation R is called a semi-order on V' if and only if for all z,y, z, w
€ V the following conditions are satisfied: (a) —zRx, (b) (xRy A zRw) = (zRw
VzRy), (¢) (rRy AN yRz) = (xRw V wRz). For a semi-order R on a set V', let
G(R) be the undirected graph whose vertices are the elements of V', and in which
two vertices u and v are adjacent if and only if uRv or v Ru. A graph G is called
a graph of a semi-order (SO-graph) if it is isomorphic to the G(R) for some semi-
order R. The class of SO-graphs, which was previously studied by Roberts [5, 6]
(see also [1]), is a proper subclass of the class of comparability graphs. Also,
a graph G is an SO-graph if and only its complement G is an indifference graph.
The class of SO-graphs constitutes an important interface between graphs and
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semi-orders, both for theoretical investigations on their structural properties, and
the development of efficient algorithmic methods for otherwise N P-hard problems
on semi-orders and their graphs. They arise naturally in many contexts, such as
scheduling, genetics, archeology (see [6]), and have been widely studied.

The following theorem is a characterization of SO-graphs in terms of forbidden
induced subgraphs.

Theorem 1 ([5]) A graph G is an SO-graph if and only if it does not contain
any of the graphs K3 U Ky, L(S(K13)) and the complement of Cy. (for k > 4) as
an induced subgraph.

The line graph of a graph G, denoted by L(G), is the intersection graph
Q(E(G)) of the family E(G) = {{u,v}: uwv € E(G)}, that is, L(G) is the graph
whose vertices are in one-to-one correspondence with the edges of G, and two
vertices of L(G) are adjacent if and only if the corresponding edges of G are
adjacent. Aigner [1] characterized the graphs whose line graphs are SO-graphs.

Theorem 2 ([1]) The line graph L(G) is an SO-graph if and only if G contains
no KsUK,y, Ky 3UKs, 2K 5, Ko3, Cs, or L(S(K13)) as a subgraph, see Figure 1.
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2 Results

Our study of SO-graphs originated with the above result of Aigner. We shall now
determine the graphs G for which the line graphs L(G) are SO-graphs.

Theorem 3 The line graph L(G) is an SO-graph if and only if G is one of the
graphs:



(1) G = 04 UpK2 U lKl;

(2) G = P;UpKy ULK,, where d < 5;

(3) G = FUIK,, where l is a nonnegative integer and F' is a subgraph of one
of the graphs given in Figure 2.
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Proof. The necessity follows from Theorem 2. On the other hand, since for every
graph F' and integer [ we have L(F) = L(FUIK}), the family of graphs whose line
graphs are SO-graphs is completely determined by the family of graphs without
isolated vertices whose line graphs are SO-graphs. Therefore we can confine our
considerations only to graphs without isolated vertices. Let F' be such a graph.
Assume that the line graph L(F) is an SO-graph.

First assume that F' is disconnected, and let £ be the number of components
of F. By Theorem 2, the graph I’ contains no 2K;5. Therefore at most one
component of F' has at least two edges. Thus either F' = kKs or F' = H U (k
—1)K>, where H is a connected component with at least two edges. In the first
case, G = FUIK; = P, U (k — 1)Ky UK is of the form (2). In the second
case, since F' contains no K3 U Ky, K;3U Ky, 2K, 5 or Cs, we conclude that H
contains no Ks, Kj3, 2K or C5. It is easy to observe that H is either Cy or
a path on at most five vertices. Consequently, G = C; U (k — 1)Ks U K or
G = P;U(k—1)KyUILK,, where d < 5. Thus G is a graph of the form either (1)
or (2).

Now assume that the graph F' is connected. Let d = d(F') be the diameter
of F, and let P = (vg,v1,...,v4) be a diametrical path in F. For a positive
integer k, let Y, be the set of vertices of F' at distance k from the path P, i.e.,
Vi = {z € V(F): dp(x, P) = mingey(pydr(z,y) = k}. By Y (i) we denote the
set of vertices which belong to Y; and are adjacent to the vertex v; of P. Note
that Y} = U?:o Y (i). If d(F') > 5, then the subgraph of F' generated by the edges
VoU1, V1V2, U3U4 and vy is isomorphic to 2K 5. Theorem 2 implies that L(F') is
not an SO-graph.

Now assume that d(F') = 4. If V(F) = V(P), then F = P = P; and F is
a subgraph of G; shown in Figure 2. Now assume that V(F) # V(P). Thus
F' is a supergraph of P and Y; # (. First we claim that Y (0) = (). Otherwise,
for z € Y(0) the subgraph of F' generated by the edges xvg, vovy, vaus and vsvy
is isomorphic to 2K 5, a contradiction to Theorem 2. Obviously, we also have



Y (4) = (. Similarly we can show that Y (1) = Y (3) = (). We now conclude that
Y (2) # 0. The impossibility of K; 3U K> in F implies that |Y(2)| = 1. From this
and the fact that S(K;3) cannot be a subgraph of F' it follows that Y, = () for
k > 2, and hence F is the graph GG; shown in Figure 2.

Now assume that d(F) = 3. Then either ' = P = P, (and F is a subgraph
of G; and Gy shown in Figure 2) or F' is a supergraph of P,. In the second
case, the impossibility of K;3U Ky in F' implies that each of the sets Y (i) has
at most one element. First we prove that some of the sets Y (0) and Y(3) is
empty. Suppose that both these sets are nonempty. We have either Y (0) = Y'(3)
or Y(0) # Y(3), and then Cs or 2K, 5 is a subgraph of F, a contradiction to
Theorem 2. In the case Y(0) # 0 (and then Y (3) = (), let = be the unique
vertex of Y(0). Since dp(z,v3) < 3 and F contains no K3 U Ky or 2K 5, it is
easy to observe that we must have Y (0) = Y(2) = {z}, Y(1) = Y(3) = 0,
and then Y;, = ) for kK > 2. From this we conclude that F is the cycle of length
four with one pendant edge, and it is a subgraph of the graph G5 shown in
Figure 2. Now suppose that Y(0) = Y(3) = 0 and Y(1) UY(2) # 0. Since
2K 5 is not a subgraph of F', the set Y (1) U Y (2) has only one element, say x.
Hence we have either x ¢ Y (2), x ¢ Y(1) or {z} = Y(1) = Y(2). Further,
we have Y, = 0 for & > 2. Otherwise Y5 # 0 and zy € E(F) for y € Y.
But now either dp(y,vs) = dr(y,v9) = 4 > d(F), or L(S(K;3)) is a subgraph
of F', a contradiction. From this it follows that F' is a graph obtained from
a path P, by attaching a new vertex and joining it to one or two inner vertices
of P;. Finally, note that in each case the graph F is a subgraph of the graph Gs
shown in Figure 2.

Now assume that d(F) = 2. The result is obvious if ' = P = P5. In the
case F' # Pj, since K, 3 U Ky cannot be a subgraph of F', we have |Y'(0)| < 2 and
Y (2)] <2. If|Y(0)| =2, say Y(0) = {z,y}, then, since none of K3UKs, K; 3UK>
and K» 3 is a subgraph of F, it must be zy ¢ E(F) and Y (2) ¢ Y (0). Hence
we have either Y(2) = 0, or |Y(2)| = 1, say Y (2) = {y}. In the first case, since
dp(z,ve) = d(F) and dp(y,vs) = d(F'), we have xvy,yv; € E(F). Then we easily
obtain Y (1) = Y(0). Therefore F' contains an induced subgraph isomorphic
to Go. Since F' contains no 2K, o, the graph G, cannot be a proper induced
subgraph of F'. Hence F' = G3. We now show that the second case cannot occur.
Otherwise, similarly as in the first case, we have zvy; € E(F). Then K3 U Kj is
a subgraph of F, a contradiction. Now suppose that |Y(0)| = |Y(2)| = 1. First
we show that, if Y(0) = {z} and Y (2) = {y}, then x = y. Suppose the contrary.
Since dp(z,v9) = d(F'), we get xvy € E(F) or vy € E(F). Hence K3UK, or Cj is
a subgraph of F', a contradiction. Therefore we get Y (0) = Y'(2). In respect that
K, 3 U Ky cannot be a subgraph of F', we must have |Y(1)| < 2. If |Y(1)| = 2,
then, by the impossibility of 2K, in F we have Y(0) = Y(2) C Y(1), Yo = 0,
and therefore F' = G5. In the case |Y'(1)| < 1, by the same arguments we get
that F' is a subgraph of G5. If Y(2) = () and Y'(0) has only one element, say z,
then, since dp(x,vy) = d(F), it must be zv; € E(F), and therefore Y (0) C Y (1).
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From the absence of K;3U Ky in F' it follows that |Y'(1)| € {1,2}. In the case
[Y'(1)| = 1 we have Y7 = {z} and Y5 = (). Thus F'is a cycle of length three with
one pendant edge, and it is a subgraph of Go. If |Y(1)| = 2, then Y] = Y(1),
Y, = 0, and therefore F' is a subgraph of Gs. In the case Y (0) = Y(2) = 0 we
have Y (1) = Y7 # (. First observe that Y3 = (). Otherwise, for y € Y5, any
shortest path joining y and vy must contain the vertex v; and some vertex of Y;.
Therefore dp(y,vy) = 3 > d(F'), a contradiction. If no two vertices of Y (1) are
adjacent, then F' = G3 = K, for n = |Y(1)| + 2. If some vertices of Y (1) are
adjacent, then from the absence of Kj 53U Kj in F' it follows that [Y'(1)| = 2 and
Fis a cycle C' of length three with two pendant edges incident to the same vertex
of C'. Hence, F' is a subgraph of Gj.

If d(F) =1, then F is a complete graph K. Since C5 cannot be a subgraph
of F', we get F' = K,, for some n < 4. (]

The following result follows from Theorems 1 and 3.

Corollary 4 Let H be a connected component of a graph G. If the line graph L(G)
is an SO-graph, then H is either an SO-graph, the path Ps, or the graph G, given
in Figure 2.

The middle graph M(G) of a graph G is defined to be the intersection
graph Q(F) of the family F = V(G) U E(G) = {{v}: v € V(G)} U {{u,v}
cuv € E(G)}. It is known that M (G) is isomorphic to the line graph L(G o K;)
of the corona G o K; of G and Kj, see [4]. (The graph G o K} is a graph obtained
by taking G and |V (G)| copies of K7, and joining the i-th vertex of G to the i-th
copy of Kj.)

We now determine graphs G for which the middle graph M (G) is an SO-graph.

Corollary 5 The middle graph M(G) is an SO-graph if and only if G is either
Ky, Ko UpK; or pKy, where p is an arbitrary nonnegative integer.

Proof. First assume that G is one of the graphs Ky, Ko UpK; or pK;. Then
GoKjisoneof Gy = K120 Ky = Kyo Ky, PsUpK,, or pKy. By Theorem 3,
the middle graph M(G) = L(G o K}) is an SO-graph.
Now assume that M (G) = L(GoK;) is an SO-graph. By Theorem 2, the graph
G o K; contains no Ko Ky, 2K, 5 or S(K;3). Therefore G' does not contain any
cycle, and it must be A(G) < 2. This implies that G is a union of disjoint paths.
Now it is easy to verify that the only possible graphs G are Ky, KoUpK; and pK;.
u

The total graph of a graph G, denoted by T(G), is the intersection graph
Q(F) of the family F = E(G)UVE(G) = {{u,v}: wv € B(G)} U {{u} U {{u,v}
:v € Ng(u)}: uw € V(G)}, that is, T(G) is the graph for which there exists a one-
to-one correspondence between its vertices and the vertices and edges of G such
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that two vertices of T'(G) are adjacent if and only if the corresponding elements
in G are adjacent or incident. This concept was originated by Behzad [3]. Tt is
interesting to note that the graphs G and L(G) are induced subgraphs of the
total graph T'(G).

We now determine graphs G for which the total graph T'(G) is an SO-graph.

Theorem 6 The total graph T'(G) of a graph G is an SO-graph if and only if G
is one of the graphs Ko, K12, K3 or nK, for an arbitrary nonnegative integer n.

Proof. Since none of induced subgraphs of the total graphs T'(nK), T(Ks),
T(Ky32), T(K3) (see Figure 3) is isomorphic to any of the forbidden subgraphs
enumerated in Theorem 1, the graphs T'(nK;), T(K>), T(K;2), T(K3) are SO-
graphs.

Now assume that T'(G) is an SO-graph and G # nkK;. First we claim that
every two edges vu and wt of G are adjacent. Otherwise, the subgraph induced
by the vertices v, u, {v,u} and {w,t} in T(G) is isomorphic to K3 U K7, a con-
tradiction to Theorem 1. Next we show that every vertex of G is incident or
adjacent to every edge of GG. Suppose not, and let v be a vertex of G which is
neither incident or adjacent to any edge uw of GG. Then the subgraph induced by
the vertices v, u,w and {u,w} in T(G) is isomorphic to K3U K7, a contradiction.

N

T(TLKl) T(KQ) T(KLQ) T(K3)

Figure 3

3 Remarks

A graph G is called to be uniquely semi-orderable (USO) if G is an SO-graph
and if P and @ are two relations such that G(P) = G(Q), then P = @ or
P = Q7!, where Q7! denotes the dual of (. Combining the results of The-
orem 3 (Corollary 5 and Theorem 6, respectively) and the characterization of
USO-graphs [[1], Theorem 17; [2], Theorem 3] we can easily characterize graphs
whose line graphs (middle graphs, total graphs, respectively) are USO-graphs.

Problems considered in the previous section can be reformulated in terms of
graph equations of type:

1 L) =1,



(2) M(G) = H,

(3) T(G)=H,
with restriction on H to be an SO-graph. Obviously, the complete solution of (1),
(2) and (3) can be deduced from Theorem 3, Corollary 5 and Theorem 6, respec-
tively.
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