
On graphs of semi-orders

Marcin Krzywkowski∗†

marcin.krzywkowski@gmail.com

Jerzy Topp‡

jerzy.topp@inf.ug.edu.pl

Abstract

Aigner characterized in terms of forbidden subgraphs all graphs whose
line graphs are graphs of semi-orders. We determine all graphs whose
line graphs (middle graphs, total graphs, respectively) are graphs of semi-
orders.
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1 Introduction

By a graph we mean a simple graph G = (V,E) with vertex set V (G) = V
and edge set E(G) = E. If v is a vertex of a graph G, then NG(v) denotes the
neighborhood of v in G, that is, the set of vertices adjacent to v. The degree of
a vertex v, denoted by dG(v), is the cardinality of its neighborhood.
A binary relation R is called a semi-order on V if and only if for all x, y, z, w

∈ V the following conditions are satisfied: (a) ¬xRx, (b) (xRy ∧ zRw) ⇒ (xRw
∨zRy), (c) (xRy ∧ yRz) ⇒ (xRw ∨ wRz). For a semi-order R on a set V , let
G(R) be the undirected graph whose vertices are the elements of V , and in which
two vertices u and v are adjacent if and only if uRv or vRu. A graph G is called
a graph of a semi-order (SO-graph) if it is isomorphic to the G(R) for some semi-
order R. The class of SO-graphs, which was previously studied by Roberts [5, 6]
(see also [1]), is a proper subclass of the class of comparability graphs. Also,
a graph G is an SO-graph if and only its complement G is an indifference graph.
The class of SO-graphs constitutes an important interface between graphs and
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semi-orders, both for theoretical investigations on their structural properties, and
the development of efficient algorithmic methods for otherwiseNP -hard problems
on semi-orders and their graphs. They arise naturally in many contexts, such as
scheduling, genetics, archeology (see [6]), and have been widely studied.
The following theorem is a characterization of SO-graphs in terms of forbidden

induced subgraphs.

Theorem 1 ([5]) A graph G is an SO-graph if and only if it does not contain
any of the graphs K3 ∪K1, L(S(K1,3)) and the complement of Ck (for k ≥ 4) as
an induced subgraph.

The line graph of a graph G, denoted by L(G), is the intersection graph
Ω(E(G)) of the family E(G) = {{u, v} : uv ∈ E(G)}, that is, L(G) is the graph
whose vertices are in one-to-one correspondence with the edges of G, and two
vertices of L(G) are adjacent if and only if the corresponding edges of G are
adjacent. Aigner [1] characterized the graphs whose line graphs are SO-graphs.

Theorem 2 ([1]) The line graph L(G) is an SO-graph if and only if G contains
no K3∪K2, K1,3∪K2, 2K1,2, K2,3, C5, or L(S(K1,3)) as a subgraph, see Figure 1.

K3 ∪K2 K1,3 ∪K2 2K1,2 K2,3

C5 S(K1,3) L(S(K1,3))

Figure 1

2 Results

Our study of SO-graphs originated with the above result of Aigner. We shall now
determine the graphs G for which the line graphs L(G) are SO-graphs.

Theorem 3 The line graph L(G) is an SO-graph if and only if G is one of the
graphs:
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(1) G = C4 ∪ pK2 ∪ lK1;
(2) G = Pd ∪ pK2 ∪ lK1, where d ≤ 5;
(3) G = F ∪ lK1, where l is a nonnegative integer and F is a subgraph of one

of the graphs given in Figure 2.

G1 = K1,2 ◦K1 G2 G3 = K1,n

Figure 2

Proof. The necessity follows from Theorem 2. On the other hand, since for every
graph F and integer l we have L(F ) = L(F∪lK1), the family of graphs whose line
graphs are SO-graphs is completely determined by the family of graphs without
isolated vertices whose line graphs are SO-graphs. Therefore we can confine our
considerations only to graphs without isolated vertices. Let F be such a graph.
Assume that the line graph L(F ) is an SO-graph.
First assume that F is disconnected, and let k be the number of components

of F . By Theorem 2, the graph F contains no 2K1,2. Therefore at most one
component of F has at least two edges. Thus either F = kK2 or F = H ∪ (k
−1)K2, where H is a connected component with at least two edges. In the first
case, G = F ∪ lK1 = P2 ∪ (k − 1)K2 ∪ lK1 is of the form (2). In the second
case, since F contains no K3 ∪K2, K1,3 ∪K2, 2K1,2 or C5, we conclude that H
contains no K3, K1,3, 2K1,2 or C5. It is easy to observe that H is either C4 or
a path on at most five vertices. Consequently, G = C4 ∪ (k − 1)K2 ∪ lK1 or
G = Pd ∪ (k− 1)K2 ∪ lK1, where d ≤ 5. Thus G is a graph of the form either (1)
or (2).
Now assume that the graph F is connected. Let d = d(F ) be the diameter

of F , and let P = (v0, v1, . . . , vd) be a diametrical path in F . For a positive
integer k, let Yk be the set of vertices of F at distance k from the path P , i.e.,
Yk = {x ∈ V (F ) : dF (x, P ) = miny∈V (P ) dF (x, y) = k}. By Y (i) we denote the
set of vertices which belong to Y1 and are adjacent to the vertex vi of P . Note
that Y1 =

⋃d

i=0 Y (i). If d(F ) ≥ 5, then the subgraph of F generated by the edges
v0v1, v1v2, v3v4 and v4v5 is isomorphic to 2K1,2. Theorem 2 implies that L(F ) is
not an SO-graph.
Now assume that d(F ) = 4. If V (F ) = V (P ), then F = P = P5 and F is

a subgraph of G1 shown in Figure 2. Now assume that V (F ) 6= V (P ). Thus
F is a supergraph of P and Y1 6= ∅. First we claim that Y (0) = ∅. Otherwise,
for x ∈ Y (0) the subgraph of F generated by the edges xv0, v0v1, v2v3 and v3v4
is isomorphic to 2K1,2, a contradiction to Theorem 2. Obviously, we also have
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Y (4) = ∅. Similarly we can show that Y (1) = Y (3) = ∅. We now conclude that
Y (2) 6= ∅. The impossibility of K1,3∪K2 in F implies that |Y (2)| = 1. From this
and the fact that S(K1,3) cannot be a subgraph of F it follows that Yk = ∅ for
k ≥ 2, and hence F is the graph G1 shown in Figure 2.
Now assume that d(F ) = 3. Then either F = P = P4 (and F is a subgraph

of G1 and G2 shown in Figure 2) or F is a supergraph of P4. In the second
case, the impossibility of K1,3 ∪ K2 in F implies that each of the sets Y (i) has
at most one element. First we prove that some of the sets Y (0) and Y (3) is
empty. Suppose that both these sets are nonempty. We have either Y (0) = Y (3)
or Y (0) 6= Y (3), and then C5 or 2K1,2 is a subgraph of F , a contradiction to
Theorem 2. In the case Y (0) 6= ∅ (and then Y (3) = ∅), let x be the unique
vertex of Y (0). Since dF (x, v3) ≤ 3 and F contains no K3 ∪ K2 or 2K1,2, it is
easy to observe that we must have Y (0) = Y (2) = {x}, Y (1) = Y (3) = ∅,
and then Yk = ∅ for k ≥ 2. From this we conclude that F is the cycle of length
four with one pendant edge, and it is a subgraph of the graph G2 shown in
Figure 2. Now suppose that Y (0) = Y (3) = ∅ and Y (1) ∪ Y (2) 6= ∅. Since
2K1,2 is not a subgraph of F , the set Y (1) ∪ Y (2) has only one element, say x.
Hence we have either x 6∈ Y (2), x 6∈ Y (1) or {x} = Y (1) = Y (2). Further,
we have Yk = ∅ for k ≥ 2. Otherwise Y2 6= ∅ and xy ∈ E(F ) for y ∈ Y2.
But now either dF (y, v3) = dF (y, v0) = 4 > d(F ), or L(S(K1,3)) is a subgraph
of F , a contradiction. From this it follows that F is a graph obtained from
a path P4 by attaching a new vertex and joining it to one or two inner vertices
of P4. Finally, note that in each case the graph F is a subgraph of the graph G2

shown in Figure 2.
Now assume that d(F ) = 2. The result is obvious if F = P = P3. In the

case F 6= P3, since K1,3 ∪K2 cannot be a subgraph of F , we have |Y (0)| ≤ 2 and
|Y (2)| ≤ 2. If |Y (0)| = 2, say Y (0) = {x, y}, then, since none ofK3∪K2, K1,3∪K2

and K2,3 is a subgraph of F , it must be xy /∈ E(F ) and Y (2) 6⊂ Y (0). Hence
we have either Y (2) = ∅, or |Y (2)| = 1, say Y (2) = {y}. In the first case, since
dF (x, v2) = d(F ) and dF (y, v2) = d(F ), we have xv1, yv1 ∈ E(F ). Then we easily
obtain Y (1) = Y (0). Therefore F contains an induced subgraph isomorphic
to G2. Since F contains no 2K1,2, the graph G2 cannot be a proper induced
subgraph of F . Hence F = G2. We now show that the second case cannot occur.
Otherwise, similarly as in the first case, we have xv1 ∈ E(F ). Then K3 ∪K2 is
a subgraph of F , a contradiction. Now suppose that |Y (0)| = |Y (2)| = 1. First
we show that, if Y (0) = {x} and Y (2) = {y}, then x = y. Suppose the contrary.
Since dF (x, v2) = d(F ), we get xv1 ∈ E(F ) or xy ∈ E(F ). Hence K3∪K2 or C5 is
a subgraph of F , a contradiction. Therefore we get Y (0) = Y (2). In respect that
K1,3 ∪ K2 cannot be a subgraph of F , we must have |Y (1)| ≤ 2. If |Y (1)| = 2,
then, by the impossibility of 2K1,2 in F we have Y (0) = Y (2) ⊂ Y (1), Y2 = ∅,
and therefore F = G2. In the case |Y (1)| ≤ 1, by the same arguments we get
that F is a subgraph of G2. If Y (2) = ∅ and Y (0) has only one element, say x,
then, since dF (x, v2) = d(F ), it must be xv1 ∈ E(F ), and therefore Y (0) ⊂ Y (1).
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From the absence of K1,3 ∪K2 in F it follows that |Y (1)| ∈ {1, 2}. In the case
|Y (1)| = 1 we have Y1 = {x} and Y2 = ∅. Thus F is a cycle of length three with
one pendant edge, and it is a subgraph of G2. If |Y (1)| = 2, then Y1 = Y (1),
Y2 = ∅, and therefore F is a subgraph of G2. In the case Y (0) = Y (2) = ∅ we
have Y (1) = Y1 6= ∅. First observe that Y2 = ∅. Otherwise, for y ∈ Y2, any
shortest path joining y and v0 must contain the vertex v1 and some vertex of Y1.
Therefore dF (y, v0) = 3 > d(F ), a contradiction. If no two vertices of Y (1) are
adjacent, then F = G3 = K1,n for n = |Y (1)| + 2. If some vertices of Y (1) are
adjacent, then from the absence of K1,3 ∪K2 in F it follows that |Y (1)| = 2 and
F is a cycle C of length three with two pendant edges incident to the same vertex
of C. Hence, F is a subgraph of G2.
If d(F ) = 1, then F is a complete graph Kn. Since C5 cannot be a subgraph

of F , we get F = Kn for some n ≤ 4.

The following result follows from Theorems 1 and 3.

Corollary 4 Let H be a connected component of a graph G. If the line graph L(G)
is an SO-graph, then H is either an SO-graph, the path P5, or the graph G1 given

in Figure 2.

The middle graph M(G) of a graph G is defined to be the intersection
graph Ω(F ) of the family F = V (G) ∪ E(G) = {{v} : v ∈ V (G)} ∪ {{u, v}
: uv ∈ E(G)}. It is known that M(G) is isomorphic to the line graph L(G ◦K1)
of the corona G◦K1 of G and K1, see [4]. (The graph G◦K1 is a graph obtained
by taking G and |V (G)| copies of K1, and joining the i-th vertex of G to the i-th
copy of K1.)
We now determine graphsG for which the middle graphM(G) is an SO-graph.

Corollary 5 The middle graph M(G) is an SO-graph if and only if G is either
K2, K2 ∪ pK1 or pK1, where p is an arbitrary nonnegative integer.

Proof. First assume that G is one of the graphs K2, K2 ∪ pK1 or pK1. Then
G ◦K1 is one of G1 = K1,2 ◦K1 = K2 ◦K1, P3 ∪ pK2, or pK2. By Theorem 3,
the middle graph M(G) = L(G ◦K1) is an SO-graph.
Now assume thatM(G) = L(G◦K1) is an SO-graph. By Theorem 2, the graph

G ◦K1 contains no K3 ◦K1, 2K1,2 or S(K1,3). Therefore G does not contain any
cycle, and it must be ∆(G) ≤ 2. This implies that G is a union of disjoint paths.
Now it is easy to verify that the only possible graphs G areK2, K2∪pK1 and pK1.

The total graph of a graph G, denoted by T (G), is the intersection graph
Ω(F ) of the family F = E(G) ∪ V E(G) = {{u, v} : uv ∈ E(G)} ∪ {{u} ∪ {{u, v}
: v ∈ NG(u)} : u ∈ V (G)}, that is, T (G) is the graph for which there exists a one-
to-one correspondence between its vertices and the vertices and edges of G such
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that two vertices of T (G) are adjacent if and only if the corresponding elements
in G are adjacent or incident. This concept was originated by Behzad [3]. It is
interesting to note that the graphs G and L(G) are induced subgraphs of the
total graph T (G).
We now determine graphs G for which the total graph T (G) is an SO-graph.

Theorem 6 The total graph T (G) of a graph G is an SO-graph if and only if G
is one of the graphs K2, K1,2, K3 or nK1 for an arbitrary nonnegative integer n.

Proof. Since none of induced subgraphs of the total graphs T (nK1), T (K2),
T (K1,2), T (K3) (see Figure 3) is isomorphic to any of the forbidden subgraphs
enumerated in Theorem 1, the graphs T (nK1), T (K2), T (K1,2), T (K3) are SO-
graphs.
Now assume that T (G) is an SO-graph and G 6= nK1. First we claim that

every two edges vu and wt of G are adjacent. Otherwise, the subgraph induced
by the vertices v, u, {v, u} and {w, t} in T (G) is isomorphic to K3 ∪ K1, a con-
tradiction to Theorem 1. Next we show that every vertex of G is incident or
adjacent to every edge of G. Suppose not, and let v be a vertex of G which is
neither incident or adjacent to any edge uw of G. Then the subgraph induced by
the vertices v, u, w and {u, w} in T (G) is isomorphic to K3∪K1, a contradiction.

T (nK1) T (K2) T (K1,2) T (K3)

Figure 3

3 Remarks

A graph G is called to be uniquely semi-orderable (USO) if G is an SO-graph
and if P and Q are two relations such that G(P ) = G(Q), then P = Q or
P = Q−1, where Q−1 denotes the dual of Q. Combining the results of The-
orem 3 (Corollary 5 and Theorem 6, respectively) and the characterization of
USO-graphs [[1], Theorem 17; [2], Theorem 3] we can easily characterize graphs
whose line graphs (middle graphs, total graphs, respectively) are USO-graphs.
Problems considered in the previous section can be reformulated in terms of

graph equations of type:
(1) L(G) = H,
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(2) M(G) = H,
(3) T (G) = H,

with restriction on H to be an SO-graph. Obviously, the complete solution of (1),
(2) and (3) can be deduced from Theorem 3, Corollary 5 and Theorem 6, respec-
tively.
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