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Abstract

We initiate the study of 2-outer-independent domination in graphs.
A 2-outer-independent dominating set of a graph G is a set D of vertices
of G such that every vertex of V (G) \D has at least two neighbors in D,
and the set V (G)\D is independent. The 2-outer-independent domination
number of a graph G is the minimum cardinality of a 2-outer-independent
dominating set of G. We show that if a graph has minimum degree at least
two, then its 2-outer-independent domination number equals the vertex
cover number. Then we investigate the 2-outer-independent domination
in graphs with minimum degree one.
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1 Introduction

Let G = (V,E) be a graph. The number of vertices of G we denote by n and the
number of edges we denote by m, thus |V (G)| = n and |E(G)| = m. By the
complement of G, denoted by G, we mean a graph which has the same ver-
tices as G, and two vertices of G are adjacent if and only if they are not ad-
jacent in G. By the neighborhood of a vertex v of G we mean the set NG(v)
= {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v, denoted by dG(v), is the
cardinality of its neighborhood. By a pendant vertex we mean a vertex of degree
one, while a support vertex is a vertex adjacent to a pendant vertex. The set of
pendant vertices of a graph G we denote by L(G). We say that a support vertex
is strong (weak, respectively) if it is adjacent to at least two pendant vertices

∗Department of Mathematics, Shahrood University of Technology, Iran
†Research fellow at the Department of Mathematics, University of Johannesburg, South

Africa.
‡Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Tech-

nology, Poland. Research partially supported by the Polish National Science Centre grant
2011/02/A/ST6/00201.

1



(exactly one pendant vertex, respectively). Let δ(G) (∆(G), respectively) mean
the minimum (maximum, respectively) degree among all vertices of G. The path
(cycle, respectively) on n vertices we denote by Pn (Cn, respectively). A wheel
Wn, where n ≥ 4, is a graph with n vertices, formed by connecting a vertex
to all vertices of a cycle Cn−1. The distance between two vertices of a graph is
the number of edges in a shortest path connecting them. The eccentricity of a
vertex is the greatest distance between it and any other vertex. The diameter of
a graph G, denoted by diam(G), is the maximum eccentricity among all vertices
of G. By Kp,q we denote a complete bipartite graph the partite sets of which have
cardinalities p and q. By a star we mean the graph K1,m where m ≥ 2. Let
uv be an edge of a graph G. By subdividing the edge uv we mean removing it,
and adding a new vertex, say x, along with two new edges ux and xv. By a
subdivided star we mean a graph obtained from a star by subdividing each one of
its edges. Generally, let Kt1,t2,...,tk denote the complete multipartite graph with
vertex set S1 ∪ S2 ∪ . . . ∪ Sk, where |Si| = ti for positive integers i ≤ t. The
corona of a graph G on n vertices, denoted by G◦K1, is the graph on 2n vertices
obtained from G by adding a vertex of degree one adjacent to each vertex of G.
We say that a subset of V (G) is independent if there is no edge between any two
vertices of this set. The independence number of a graph G, denoted by α(G),
is the maximum cardinality of an independent subset of the set of vertices of G.
A vertex cover of a graph G is a set D of vertices of G such that for every edge
uv of G, either u ∈ D or v ∈ D. The vertex cover number of a graph G, denoted
by β(G), is the minimum cardinality of a vertex cover of G. It is well-known
that α(G) + β(G) = |V (G)|, for any graph G (see [12]). The clique number of G,
denoted by ω(G), is the number of vertices of a greatest complete graph which is
a subgraph of G. By G∗ we denote the graph obtained from G by removing all
pendant and isolated vertices.
A subset D ⊆ V (G) is a dominating set of G if every vertex of V (G) \D has

a neighbor in D, while it is a 2-dominating set of G if every vertex of V (G) \D
has at least two neighbors in D. The domination (2-domination, respectively)
number of a graph G, denoted by γ(G) (γ2(G), respectively), is the minimum
cardinality of a dominating (2-dominating, respectively) set of G. Note that 2-
domination is a type of multiple domination in which each vertex, which is not in
the dominating set, is dominated at least k times for a fixed positive integer k.
Multiple domination was introduced by Fink and Jacobson [4], and further stud-
ied for example in [1, 2, 3, 5, 6, 8, 11]. For a comprehensive survey of domination
in graphs, see [7].
A subset D ⊆ V (G) is a 2-outer-independent dominating set, abbreviated

2OIDS, of G if every vertex of V (G)\D has at least two neighbors in D, and the
set V (G) \D is independent. The 2-outer-independent domination number of G,
denoted by γoi

2
(G), is the minimum cardinality of a 2-outer-independent dominat-

ing set of G. A 2-outer-independent dominating set of G of minimum cardinality
is called a γoi

2
(G)-set. The 2-outer-independent domination number of trees was
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investigated in [9], where it was proved that it is upper bounded by half of the
sum of the number of vertices and the number of pendant vertices.
In a distributed network, some vertices act as resource centers, or servers,

while other vertices are clients. If a set D of servers is a dominating set, then every
client in V (G)\D has direct (one hop) access to at least one server. 2-dominating
sets represent a higher level of service, since every client has guaranteed access
to at least two servers. The outer-independence condition means that the clients
are not able to connect with each other directly. This may be useful for example
for security, when we allow clients to communicate with each other only through
servers.
We initiate the study of 2-outer-independent domination in graphs. We show

that if a graph has minimum degree at least two, then its 2-outer-independent
domination number equals the vertex cover number. Then we investigate the
2-outer-independent domination in graphs with minimum degree one. We find
the 2-outer-independent domination numbers for several classes of graphs. Next
we prove some lower and upper bounds on the 2-outer-independent domination
number of a graph, and we characterize the extremal graphs. Then we study
the influence of removing or adding vertices and edges. We also give Nordhaus-
Gaddum type inequalities.

2 General graphs

We begin with the following two straightforward observations.
Since every 2-outer-independent dominating set of a graph is a 2-dominating

set of this graph, we have the following inequality.

Observation 1 For every graph G we have γoi
2
(G) ≥ γ2(G).

Since a pendant vertex has only one neighbor in the graph, it cannot have two
neighbors in the dominating set. Thus we have the following property of pendant
vertices.

Observation 2 Every pendant vertex of a graph G belongs to every γoi
2
(G)-set.

We have the following lower bound on the 2-outer-independent domination
number of a graph in terms of its clique number.

Proposition 3 For every graph G we have γoi
2
(G) ≥ ω(G)− 1.

Proof. Let D be a γoi
2
(G)-set, and let A be a maximum clique in G. Since

V (G) \ D is independent, we have |(V (G) \ D) ∩ A| ≤ 1. This implies that
|D| ≥ |A| − 1. We now get γoi

2
(G) = |D| ≥ |A| − 1 = ω(G)− 1.
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Let us observe that the bound from the previous proposition is tight. For
n ≥ 3 we have γoi

2
(Kn) = n− 1 = ω(Kn)− 1.

Let us observe that for any non-negative integer there exists a graph such
that the difference between its 2-outer-independent domination and 2-domination
numbers equals that non-negative integer.

Observation 4 For every integer n ≥ 3 we have γoi
2
(Kn) = γ2(Kn) + n− 3.

Now let us observe that the 2-outer-independent domination number of a dis-
connected graph equals the sum of the 2-outer-independent domination numbers
of its connected components.

Observation 5 If G is a disconnected graph with connected components G1,
G2, . . . , Gk, then γ

oi
2
(G) = γoi

2
(G1) + γoi

2
(G2) + . . .+ γoi

2
(Gk).

Now let us observe that for any non-negative integer there exists a graph
such that the difference between its 2-outer-independent domination number and
clique number equals that non-negative integer.

Observation 6 For every integer m ≥ 2 we have γoi
2
(K1,m) = ω(K1,m) +m− 2.

Now let us observe that every 2OIDS of a graph is a vertex cover of this graph.

Observation 7 For every graph G we have γoi
2
(G) ≥ β(G).

Let us observe that for any non-negative integer there exists a graph such that
the difference between its 2-outer-independent domination number and vertex
cover number equals that non-negative integer. Obviously, γoi

2
(K3) = 2 = β(K3).

Observation 8 For every integer m ≥ 2 we have γoi
2
(K1,m) = β(K1,m) +m− 1.

We now prove that if a graph has no pendant or isolated vertices, then its
2-outer-independent domination number and vertex cover number are equal.

Theorem 9 Let G be a graph. If δ(G) ≥ 2, then γoi
2
(G) = β(G).

Proof. Let D be a minimum vertex cover of G, and let x ∈ V (G) \D. Clearly,
NG(x) ⊆ D. Since δ(G) ≥ 2, the vertex x is adjacent to at least two vertices of D.
There are no edges between any two vertices of V (G) \D, thus the set V (G) \D
is independent. This implies that D is a 2OIDS of the graph G. Consequently,
γoi
2
(G) ≤ β(G). On the other hand, by Observation 7 we have γoi

2
(G) ≥ β(G).

Thus γoi
2
(G) = β(G).

Corollary 10 Let G be a graph. If γoi
2
(G) 6= β(G), then δ(G) ∈ {0, 1}.

Henceforth, we study only connected graphs G with δ(G) = 1, that is, con-
nected graphs having at least one pendant vertex.
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3 Connected graphs with minimum degree one

Throughout this section we only consider connected graphs with minimum degree
one.
It is easy to obtain the following formula for the 2-outer-independent domi-

nation number of a path.

Observation 11 For every positive integer n we have γoi
2
(Pn) = ⌊n/2⌋+ 1.

We have the following relation between the 2-outer-independent domination
number of a graph and the independence number of the graph obtained from it
by removing all pendant vertices.

Lemma 12 For every graph G with n vertices we have γoi
2
(G) = n− α(G∗).

Proof. Let D be any γoi
2
(G)-set. By Observation 2, all pendant vertices belong

to the set D. Therefore V (G) \D ⊆ V (G∗). The set V (G) \D is independent,
thus α(G∗) ≥ |V (G) \ D| = n − γoi

2
(G). Now let D∗ be any α(G∗)-set. Let us

observe that in the graph G every vertex of D∗ has at least two neighbors in
the set V (G) \ D∗. Thus V (G) \ D∗ is a 2OIDS of G. We now get γoi

2
(G) ≤

|V (G) \D∗| = n− α(G∗). This implies that γoi
2
(G) = n− α(G∗).

We have the following obvious bounds on the 2-outer-independent domination
number of a graph.

Observation 13 For every graph G we have 2 ≤ γoi
2
(G) ≤ n.

We now characterize the graphs attaining the bounds from the previous ob-
servation.

Proposition 14 Let G be a graph. We have:

(i) γoi
2
(G) = 2 if and only if G ∈ {P2, P3};

(ii) γoi
2
(G) = n if and only if G = P2.

Proof. Obviously, γoi
2
(P2) = 2 = n and γoi

2
(P3) = 2. Assume that for some

graph G we have γoi
2
(G) = 2. Let D be a γoi

2
(G)-set. If all vertices of G belong

to the set D, then the graph G has two vertices. Consequently, G = P2. Now
let x be a vertex of V (G) \ D. The vertex x has to be dominated twice, thus
dG(x) ≥ 2. Since the set V (G)\D is independent, the vertex x cannot have more
than two neighbors in G. This implies that G is a path P3 as no other vertices
can be dominated twice.
Now assume that for some graph G we have γoi

2
(G) = n. If G has at least

three vertices, then it has a vertex, say x, of degree at least two. Let us observe
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that D \ {x} is a 2OIDS of the graph G. This implies that γoi
2
(G) ≤ n − 1.

Therefore the graph G has exactly two vertices, and consequently, it is a path P2.

Corollary 15 For every graph G with at least three vertices we have γoi
2
(G)

≤ n− 1.

We now consider graphs G such that 3 ≤ γoi
2
(G) ≤ n− 1.

Theorem 16 Let G be a graph of order n ≥ 3, and let k be an integer such that
3 ≤ k ≤ n − 1. We have γoi

2
(G) = k if and only if G can be obtained from a

connected graph H of order k with |L(H)| ≤ n−k and α(H) = n−k, by attaching
n − k vertices to H in a way such that every pendant vertex of H is a support
vertex of G.

Proof. Assume that γoi
2
(G) = k. Lemma 12 implies that α(G∗) = n−k. Clearly,

every vertex of V (G) \ V (G∗) is a pendant vertex in G. Let us also observe that
every pendant vertex of G∗ is a support vertex of G. Thus |L(G∗)| ≤ n−|V (G∗)|.
Now assume that G is a graph obtained from a connected graph H of order

k with |L(H)| ≤ n− k and α(H) = n− k, by attaching n− k vertices to H in a
way such that every pendant vertex of H is a support vertex of G. Let us observe
that G∗ = H. Let D be a maximum independent set of H. Clearly, V (G) \D is
a 2OIDS of G, and therefore γoi

2
(G) ≤ n− α(H) = k. Suppose that γoi

2
(G) < k.

Using Lemma 12 we obtain α(H) > n− k, a contradiction. Thus γoi
2
(G) = k.

3.1 Bounds

We have the following upper bound on the 2-outer-independent domination num-
ber of a graph in terms of its vertex cover number and the number of pendant
vertices.

Proposition 17 If G is a graph with l pendant vertices, then γoi
2
(G) ≤ β(G)+ l.

Proof. Let us observe that vertices of any minimum vertex cover of G together
with all pendant vertices of G form a 2OIDS of the graph G.

Let us observe that the bound from the previous proposition is tight. Let l be
a positive integer, and let H = C6. Let x be a vertex of H, and let G be a graph
obtained from H by attaching l new vertices and joining them to the vertex x.
It is straightforward to see that β(G) = 3, while γoi

2
(G) = 3 + l.

We have the following upper bound on the 2-outer-independent domination
number of a graph in terms of its vertex cover number and maximum degree.
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Proposition 18 For every graph G we have γoi
2
(G) ≤ β(G)∆(G).

Proof. Let S be a minimum vertex cover of G. The vertices of S together with
all pendant vertices of G form a 2OIDS of the graph G. Every vertex of S is
adjacent to at most ∆(G) pendant vertices. Thus γoi

2
(G) ≤ β(G)∆(G).

Let us observe that the bound from the previous proposition is tight. For
stars K1,m we have γ

oi
2
(K1,m) = m = 1 ·m = β(K1,m)∆(K1,m).

We have the following upper bound on the 2-outer-independent domination
number of a graph.

Proposition 19 For every graph G with l pendant vertices we have

γoi
2
(G) ≤ n∆(G) + l

∆(G) + 1
.

Proof. By Lemma 12 we have γoi
2
(G) = n − α(G∗). Since every maximal

independent set of a graph is a dominating set of this graph, we have γ(G∗) ≤
α(G∗). We now get

α(G∗) ≥ γ(G∗) ≥ |V (G∗)|
∆(G∗) + 1

≥ n− l

∆(G) + 1
.

We have the following upper bound on the 2-outer-independent domination
number of a graph in terms of its diameter.

Proposition 20 If G is a graph of diameter d, then γoi
2
(G) ≤ n− ⌊d/2⌋.

Proof. Let v0, v1, ..., vd be a diametrical path in G. If d is even, then let D
= {v2i−1 : 1 ≤ i ≤ d/2}, while if d is odd, then let D = {v2i−1 : 1 ≤ i ≤ (d−1)/2}.
Let us observe that V (G) \D is a 2OIDS of the graph G.

Let us observe that the bound from the previous proposition is tight. We have
γoi
2
(Pn) = ⌊n/2⌋+ 1 = n− ⌊(n− 1)/2⌋ − 1 + 1 = n− ⌊(n− 1)/2⌋ = n− ⌊d/2⌋.
We have the following upper bound on the 2-outer-independent domination

number of a tree in terms of its independence number and the number of support
vertices.

Theorem 21 For every tree T of order at least three with s support vertices we
have γoi

2
(T ) ≤ α(T ) + s− 1.
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Proof. Let nmean the number of vertices of the tree T . We proceed by induction
on this number. If diam(T ) = 1, then T = P2. We have γ

oi
2
(P2) = 2 = 1 + 2− 1

= α(P2)+ s−1. Now assume that diam(T ) = 2. Thus T is a star K1,m. We have
γoi
2
(K1,m) = m < m+1 = m+2−1 ≤ 2m−1 = m+m−1 = α(K1,m)+s(K1,m)−1.

Now let us assume that diam(T ) = 3. Thus T is a double star. We have γoi
2
(T )

= n− 1 = n− 2 + 2− 1 = α(T ) + s(T )− 1.
Now assume that diam(T ) ≥ 4. Thus the order n of the tree T is at least

five. We obtain the result by the induction on the number n. Assume that the
theorem is true for every tree T ′ of order n′ < n.
First assume that some support vertex of T , say x, is strong. Let y be a

pendant vertex adjacent to x. Let T ′ = T − y. We have s′ = s. Let D′ be
any γoi

2
(T ′)-set. Obviously, D′ ∪ {y} is a 2OIDS of the tree T . Thus γoi

2
(T ) ≤

γoi
2
(T ′) + 1. Let us observe that there exists a maximum independent set of T ′

that contains the vertex x. Let A′ be such a set. It is easy to see that D′ ∪ {y}
is an independent set of the tree T . Thus α(T ) ≥ α(T ′) + 1. We now get
γoi
2
(T ) ≤ γoi

2
(T ′) + 1 ≤ α(T ′) + s′ = α(T ′) + s ≤ α(T ) + s − 1. Henceforth, we

can assume that all support vertices of T are weak.
We now root T at a vertex r of maximum eccentricity diam(T ). Let t be

a pendant vertex at maximum distance from r, v be the parent of t, u be the
parent of v, and w be the parent of u in the rooted tree. By Tx let us denote the
subtree induced by a vertex x and its descendants in the rooted tree T .
Assume that among the children of u there is a support vertex, say x, different

from v. Let T ′ = T − Tv. We have s
′ = s − 1. Let us observe that there exists

a γoi
2
(T ′)-set that contains the vertex u. Let D′ be such a set. It is easy to

observe that D′ ∪ {t} is a 2OIDS of the tree T . Thus γoi
2
(T ) ≤ γoi

2
(T ′) + 1.

Now let A′ be a maximum independent set of T ′. It is easy to observe that
D′ ∪ {t} is an independent set of T . Thus α(T ) ≥ α(T ′) + 1. We now get
γoi
2
(T ) ≤ γoi

2
(T ′) + 1 ≤ α(T ′) + s′ = α(T ′) + s ≤ α(T ) + s− 1.

Now assume that u is adjacent to a pendant vertex, say x. It suffices to
consider only the possibility when dT (u) = 3. Let T ′ = T−x. We have s′ = s−1.
Obviously, α(T ) ≥ α(T ′). Let D′ be any γoi

2
(T ′)-set. Obviously, D′ ∪ {x} is

a 2OIDS of the tree T . Thus γoi
2
(T ) ≤ γoi

2
(T ′) + 1. We now get γoi

2
(T ) ≤

γoi
2
(T ′) + 1 ≤ α(T ′) + s′ = α(T ′) + s− 1 ≤ α(T ) + s− 1.
Now assume that dT (u) = 2. Let T ′ = T −Tv. We have s

′ ≤ s. Let D′ be any
γoi
2
(T ′)-set. By Observation 2 we have u ∈ D′. It is easy to observe that D′ ∪{t}

is a 2OIDS of the tree T . Thus γoi
2
(T ) ≤ γoi

2
(T ′) + 1. Now let A′ be a maximum

independent set of T ′. It is easy to see that D′ ∪ {t} is an independent set of the
tree T . Thus α(T ) ≥ α(T ′) + 1. We now get γoi

2
(T ) ≤ γoi

2
(T ′) + 1 ≤ α(T ′) + s′

≤ α(T ′) + s ≤ α(T ) + s− 1.

We have the following bounds on the 2-outer-independent domination number
of a graph in terms of its order and size.
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Proposition 22 For every graph G we have

2n+ 1−
√

(2n− 1)2 − 8(m− 1)

2
≤ γoi

2
(G) ≤ 2n+ 1 +

√

(2n− 1)2 − 8(m− 1)

2
.

Proof. Let D be a γoi
2
(G)-set. Let t denote the number of edges between the

vertices of D and the vertices of V (G) \D. Obviously, m ≤ t+ |E(G[D])|. Since
G has at least one pendant vertex, we have t ≤ (|D| − 1) · |V (G) \D|+1. Notice
that |E(G[D])| ≤ (|D|− 1)(|D|− 2)/2. Now simple calculations imply the result.

We also have the following lower bound on the 2-outer-independent domina-
tion number of a graph in terms of its order and size.

Proposition 23 For every graph G we have γoi
2
(G) ≥ n−m/2.

Proof. Let D be a γoi
2
(G)-set. Since every vertex of V (G) \D has at least two

neighbors in D, have m ≥ 2|V (G) \D|.

Let us observe that the bound from the previous proposition is tight. For
positive integers n we have γoi

2
(Pn) = ⌊n/2⌋ + 1 = (n + 1)/2 = n − (n − 1)/2

= n−m/2.
We have the following necessary condition for that a graph attains the bound

from the previous proposition.

Proposition 24 If for a graph G we have γoi
2
(G) = n−m/2, then the graph G

is bipartite and it has at least m/2 vertices of degree two.

Proof. Let D be a γoi
2
(G)-set. Let t denote the number of edges between the

vertices of D and the vertices of V (G)\D. If some vertex of V (G)\D has degree
at least three, then we get m ≥ t ≥ 3 + 2(|V (G) \ D| − 1) = 2|V (G) \ D| + 1
= 2(n−γoi

2
(G))+1 = m+1 > m, a contradiction. Thus every vertex of V (G)\D

has degree two. We have |V (G) \ D| = n − γoi
2
(G) = m/2. Thus there are at

least m/2 vertices of degree two. If the set D is not independent, then we get
m > t = 2|V (G) \ D| = 2(n − γoi

2
(G)) = m, a contradiction. Therefore D is

an independent set. Since the set V (G) \D is also independent, the graph G is
bipartite.

It is an open problem to characterize the graphs attaining the bound from
Proposition 24.

Problem 25 Characterize graphs G such that γoi
2
(G) = n−m/2.

We now study the influence of the removal of a vertex of a graph on its
2-outer-independent domination number.
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Proposition 26 Let G be a graph. For every vertex v of G we have γoi
2
(G)− 1

≤ γoi
2
(G− v) ≤ γoi

2
(G) + dG(v)− 1.

Proof. Let D be a γoi
2
(G)-set. If v 6∈ D, then observe that D is a 2OIDS of the

graph G − v. Now assume that v ∈ D. Let us observe that D ∪ NG(v) \ {v}
is a 2OIDS of the graph G − v. Therefore γoi

2
(G − v) ≤ |D ∪ NG(v) \ {v}|

≤ |D \ {v}|+ |NG(v)| = γoi
2
(G) + dG(v)− 1.

Now let D′ be any γoi
2
(G− v)-set. It is easy to see that D′ ∪ {v} is a 2OIDS

of the graph G. Thus γoi
2
(G) ≤ γoi

2
(G− v) + 1.

Let us observe that the bounds from the previous proposition are tight. For
the lower bound, let G = Kn, where n ≥ 4. We have γoi

2
(G) = γoi

2
(Kn) = n − 1

= n − 2 + 1 = γoi
2
(Kn−1) + 1. For the upper bound, let G be subdivided star.

The vertex of minimum eccentricity we denote by v. Let m denote its degree.
We have G− v = mK2. Consequently, γ

oi
2
(G− v) = γoi

2
(mK2) = mγoi

2
(K2) = 2m

= m+ 1 +m− 1 = γoi
2
(G) + dG(v)− 1.

We now study the influence of the removal of an edge of a graph on its 2-
outer-independent domination number.

Proposition 27 Let G be a graph. For every edge e of G we have

γoi
2
(G− e) ∈ {γoi

2
(G)− 1, γoi

2
(G), γoi

2
(G) + 1}.

Proof. Let D be a γoi
2
(G)-set, and let e = xy be an edge of G. Since the

set V (G) \D is independent, some of the vertices x and y belongs to the set D.
Without loss of generality we may assume that x ∈ D. If y ∈ D, then it is easy
to see that D is a 2OIDS of the graph G− e. If y /∈ D, then D ∪ {y} is a 2OIDS
of G− e. Thus γoi

2
(G− e) ≤ γoi

2
(G) + 1. Now let D′ be a γoi

2
(G− e)-set. If some

of the vertices x and y belongs to the set D′, then D′ is a 2OIDS of the graph G.
If none of the vertices x and y belongs to the set D′, then it is easy to observe
that D′ ∪ {x} is a 2OIDS of the graph G. Therefore γoi

2
(G) ≤ γoi

2
(G− e) + 1.

Let us observe that the bounds from the previous proposition are tight. For
the lower bound, let xy be an edge of the complete graph K4. Let G be a graph
obtained from K4 by adding two vertices x1, y1, and joining x to x1, and y to y1.
Then γoi

2
(G−xy) = γoi

2
(G)−1. For the upper bound, consider a path P4, and the

central edge of it.
Similarly, we have the following result, which immediately follows from Propo-

sition 27, concerning the influence of adding an edge on the 2-outer-independent
domination number of a graph.

Proposition 28 Let G be a graph. If e /∈ E(G), then

γoi
2
(G+ e) ∈ {γoi

2
(G)− 1, γoi

2
(G), γoi

2
(G) + 1}.

Let us observe that the bounds from the previous proposition are tight.
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3.2 Nordhaus-Gaddum type inequalities

A Nordhaus-Gaddum type result is a lower or upper bound on the sum or product
of a parameter of a graph and its complement. In 1956 Nordhaus and Gaddum
[10] proved the following inequalities for the chromatic number of a graph G and
its complement: 2

√
n ≤ χ(G) + χ(G) ≤ n+ 1 and n ≤ χ(G)χ(G) ≤ (n+ 1)2/4.

We now give Nordhaus-Gaddum type inequalities for the sum of the 2-outer-
independent domination number of a graph and its complement.

Theorem 29 For every graph G we have n− 1 ≤ γoi
2
(G) + γoi

2
(G) ≤ 2n.

Proof. Let D be a γoi
2
(G)-set. Since V (G)\D is an independent set, the vertices

of V (G) \D form a clique in G. Let D be any γoi
2
(G)-set. Let us observe that at

most one vertex of V (G)\D does not belong toD. Therefore |D| ≥ |V (G)\D|−1.
We now get γoi

2
(G) + γoi

2
(G) = |D|+ |D| ≥ |D|+ |V (G) \D| − 1 = n− 1.

Obviously, γoi
2
(G) ≤ n and γoi

2
(G) ≤ n. Thus γoi

2
(G) + γoi

2
(G) ≤ 2n.

We now prove that the complete graphs of order at most two, and their
complements are the only graphs which attain the upper bound from Theorem 29.

Theorem 30 Let G be a graph. We have γoi
2
(G) + γoi

2
(G) = 2n if and only if

G = K1 or G = K2 or G = K1 ∪K1.

Proof. First, it is straightforward to see that γoi
2
(G) + γoi

2
(G) = 2n if G = K1

or G = K2 or G = K1 ∪K1. Now assume that for some graph G we have γ
oi
2
(G)

+γoi
2
(G) = 2n. This implies that γoi

2
(G) = n and γoi

2
(G) = n. By Corollary 15,

n ≤ 2. Consequently, G = K1 or G = K2 or G = K1 ∪K1.

Corollary 31 If G and G are different from K1 and K2, then γoi
2
(G) + γoi

2
(G)

≤ 2n− 1.

We now prove that the path P3 and its complement are the only graphs which
attain the bound from the previous corollary.

Theorem 32 Let G be a graph. We have γoi
2
(G) + γoi

2
(G) = 2n − 1 if and only

if G or G is a path P3.

Proof. We have γoi
2
(P3) + γoi

2
(P3) = 5 = 2n − 1. Now assume that for some

graph G we have γoi
2
(G) + γoi

2
(G) = 2n− 1. This implies that γoi

2
(G) = n− 1 or

γoi
2
(G) = n − 1. Without loss of generality we assume that γoi

2
(G) = n − 1. By

Theorem 16, the graph G is obtained from a complete graph Kr, for some r ≥ 1,
by attaching at least one pendant vertex. We show that n = 3. Suppose that
n ≥ 4. Since δ(G) = 1, we may assume that x is a pendant vertex of G. Thus
x has at least two neighbors in the graph G. Therefore V (G) \ {x} is a 2OIDS

11



of G, and consequently, γoi
2
(G) ≤ n − 1. We now get γoi

2
(G) + γoi

2
(G) ≤ 2n − 2,

a contradiction. We deduce that n = 3. Consequently, G = P3.

We next improve the lower bound from Theorem 29.

Theorem 33 For every graph G with l pendant vertices we have γoi
2
(G)+γoi

2
(G) ≥

n+ l − 2.

Proof. By Theorem 16, the graph G is obtained from a connected graph H with
α(H) = n − γoi

2
(G), by attaching n − |V (H)| pendant vertices to H such that

any pendant vertex of H is a support vertex of G. Let X = V (G) \ V (H). By
Lemma 12 we have γoi

2
(G) = n−α(H). Let S be a maximum independent set in

H. Then clearly V (G) \ S is a γoi
2
(G)-set. Let D be a γoi

2
(G)-set. Clearly, G[X]

and G[S] are complete graphs. Thus |D ∩ S| ≥ |S| − 1, and |D ∩X| ≥ |X| − 1.
We now get

γoi
2
(G) + γoi

2
(G) ≥ |V (G)| − |S|+ |S| − 1 + |X| − 1 = n+ |X| − 2 = n+ l − 2.

We now characterize graphs attaining the lower bound from Theorem 29, that
is, graphs G for which γoi

2
(G)+ γoi

2
(G) = n− 1. Since by Observation 13 we have

γoi
2
(G) ≥ 2, we may assume that γoi

2
(G) < n− 2.

Theorem 34 Let G be a graph such that γoi
2
(G) < n− 2. Then γoi

2
(G) + γoi

2
(G)

= n − 1 if and only if G is obtained from a connected graph H such that α(H)
= n− γoi

2
(G) and |L(H)| ≤ 1, by attaching one pendant vertex to H such that if

H has a pendant vertex x, then x is a support vertex in G.

Proof. Assume that for some graph G we have γoi
2
(G) + γoi

2
(G) = n − 1. By

Theorem 16, the graph G is obtained from a connected graph H with α(H)
= n − γoi

2
(G), by attaching n − |V (H)| pendant vertices to H such that any

pendant vertex of H is a support vertex of G. Let |V (G) \ V (H)| = l. By
Theorem 33 we have n−1 = γoi

2
(G)+γoi

2
(G) ≥ n+ l−2. This implies that l ≤ 1,

and so l = 1. Now the result follows.
Conversely, let G be obtained from a connected graph H with α(H) = n

−γoi
2
(G) and |L(H)| ≤ 1, by attaching one pendant vertex (say u) to H such

that if H has a pendant vertex x, then x is a support vertex in G. By Theorem
16 we have γoi

2
(G) = n − α(H). Let S be a maximum independent set in H.

Since γoi
2
(G) < n− 2, we find that |S| ≥ 3. Let x, y ∈ S. Then (S−{x, y})∪{u}

is a 2OIDS for G, and thus γoi
2
(G) + γoi

2
(G) ≤ n− |S|+ |S| − 2 + 1 = n− 1. By

Theorem 33, γoi
2
(G) + γoi

2
(G) ≥ n+ l− 2 = n− 1, and thus the result follows.

Similarly we obtain the following result.

12



Theorem 35 Let k ≤ n−1 be a non-negative integer. If G is a graph of order n,
then γoi

2
(G)+γoi

2
(G) = n+k if and only if G is obtained from a connected graph H

such that α(H) = n− γoi
2
(G) and |L(H)| ≤ t, by attaching t pendant vertices to

H, where t ≤ k + 2, in a way such that if H has a pendant vertex x, then x is a
support vertex in G.
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