ON TREES ATTAINING AN UPPER BOUND ON THE TOTAL DOMINATION NUMBER

MARCIN KRZYWKOWSKI*+

Communicated by

ABSTRACT. A total dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D. The total domination number of a graph G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. Chellali and Haynes [Total and paired-domination numbers of a tree, AKCE International Journal of Graphs and Combinatorics 1 (2004), 69–75] established the following upper bound on the total domination number of a tree in terms of the order and the number of support vertices, $\gamma_t(T) \leq (n+s)/2$. We characterize all trees attaining this upper bound.

1. Introduction

Let G = (V, E) be a graph. By the neighborhood of a vertex v of G we mean the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong

MSC(2010): Primary: 05C69; Secondary: 05C05.

Keywords: domination, total domination, tree.

Received: ?? Month 20??, Accepted: ?? Month 20??.

^{*}Research fellow at the Department of Mathematics, University of Johannesburg, South

⁺Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland. Research supported by the Polish Ministry of Science and Higher Education grant IP/2012/038972.

 $^{\ \, \}textcircled{C}$ 2011 Iranian Mathematical Society.

2 Krzywkowski

(weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The path on n vertices we denote by P_n . Let T be a tree, and let v be a vertex of T. We say that v is adjacent to a path P_n if there is a neighbor of v, say x, such that the subtree resulting from T by removing the edge vx and which contains the vertex x as a leaf, is a path P_n . By a star we mean a connected graph in which exactly one vertex has degree greater than one.

A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \setminus D$ has a neighbor in D. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. For a comprehensive survey of domination in graphs, see [6, 7].

A subset $D \subseteq V(G)$ is a total dominating set, abbreviated TDS, of G if every vertex of G has a neighbor in D. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. A total dominating set of G of minimum cardinality is called a $\gamma_t(G)$ -set. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [3], and further studied for example in [1, 5, 8].

Chellali and Haynes [2] established the following upper bound on the total domination number of a tree, $\gamma_t(T) \leq (n+s)/2$, where n means the order and s means the number of support vertices of the tree T.

DeLa Viña et al. [4] improved the above bound. They proved that if T is a tree different from star, then $\gamma_t(T) \leq (n+s)/2 - (l-s^*)/2$, where l means the number of leaves and s^* means the number of support vertices non-adjacent to any other support vertex.

We characterize all trees attaining the upper bound of Chellali and Haynes.

2. Results

Since the one-vertex graph does not have a total dominating set, in this paper, by a tree we mean only a connected graph with no cycle, and which has at least two vertices.

We begin with the following two straightforward observations.

Observation 2.1. Every support vertex of a graph G is in every TDS of G.

Observation 2.2. For every connected graph G of diameter at least three, there exists a $\gamma_t(G)$ -set that contains no leaf.

Chellali and Haynes [2] proved that for every tree T of order $n \geq 3$ with s support vertices we have $\gamma_t(T) \leq (n+s)/2$. It is easy to see that

the path P_2 also satisfies the inequality. Therefore we have the following result.

Theorem 2.3. ([2]) For every tree T of order n with s support vertices we have $\gamma_t(T) \leq (n+s)/2$.

To characterize the trees attaining the bound from the previous theorem, we introduce a family \mathcal{T} of trees $T=T_k$ that can be obtained as follows. Let $T_1 \in \{P_2, P_3\}$. If $T_1=P_2$, then the vertices of T_1 we denote by x and y. If $T_1=P_3$, then the support vertex of T_1 we denote by y, and one of the leaves we denote by x. Let $A(T_1)=\{x,y\}$. Now let H_1 be a path P_3 with the support vertex labeled v and one of the leaves labeled v. Let v be a path v with the support vertices labeled v and v. The leaf adjacent to v we denote by v, and the leaf adjacent to v we denote by v. If v is a positive integer, then v in v is obtained recursively from v by one of the following operations.

- Operation \mathcal{O}_1 : Attach a copy of H_1 by joining the vertex u to a vertex of T_k adjacent to a path P_3 . Let $A(T) = A(T') \cup \{u, v\}$.
- Operation \mathcal{O}_2 : Attach a copy of H_1 by joining the vertex u to a vertex of T_k which is not a leaf and is adjacent to a support vertex. Let $A(T) = A(T') \cup \{u, v\}$.
- Operation \mathcal{O}_3 : Attach a copy of H_2 by joining the vertex t to a leaf of T_k adjacent to a weak support vertex. Let $A(T) = A(T') \cup \{u, v\}$.

Note that for the path P_2 , only operation \mathcal{O}_3 can be applied. Both vertices of P_2 are leaves and at the same time they are weak support vertices.

We now prove that for every tree T of the family \mathcal{T} , the set A(T) defined above is a TDS of minimum cardinality equal to (n+l)/2.

Lemma 2.3. If $T \in \mathcal{T}$, then the set A(T) defined above is a $\gamma_t(T)$ -set of size (n+s)/2.

Proof. We use the terminology of the construction of the trees $T = T_k$, the set A(T), and the graphs H_1 and H_2 defined above. To show that A(T) is a $\gamma_t(T)$ -set of cardinality (n+s)/2, we use the induction on the number k of operations performed to construct the tree T. If $T = P_2$, then $(n+s)/2 = (2+2)/2 = 2 = |A(T)| = \gamma_t(T)$. If $T = P_3$, then $(n+s)/2 = (3+1)/2 = 2 = |A(T)| = \gamma_t(T)$. Let k be a positive integer. Assume that the result is true for every tree $T' = T_k$ of the family T constructed by k-1 operations. For a given tree T', let n' denote its

4 Krzywkowski

order and s' the number of its support vertices. Let $T = T_{k+1}$ be a tree of the family \mathcal{T} constructed by k operations.

First assume that T is obtained from T' by operation \mathcal{O}_1 . We have n=n'+3 and s=s'+1. The vertex to which is attached P_3 we denote by x. Let abc denote a path P_3 adjacent to x, and such that $a \neq u$. Let a and x be adjacent. It is easy to see that $A(T)=A(T')\cup\{u,v\}$ is a TDS of the tree T. Thus, $\gamma_t(T)\leq \gamma_t(T')+2$. Now let D be a $\gamma_t(T)$ -set that contains no leaf. By Observation 2.1 we have $v\in D$. Each one of the vertices v and b has to have a neighbor in D, thus $u, a\in D$. Let us observe that $D\setminus\{u,v\}$ is a TDS of the tree T' as the vertex x has a neighbor in $D\setminus\{u,v\}$. Therefore, $\gamma_t(T')\leq \gamma_t(T)-2$. We now conclude that $\gamma_t(T)=\gamma_t(T')+2$. We get $\gamma_t(T)=|A(T)|=|A(T')|+2$ =(n'+s')/2+2=(n-3+s-1)/2+2=(n+s)/2.

Now assume that T is obtained from T' by operation \mathcal{O}_2 . We have n=n'+3 and s=s'+1. The vertex to which is attached P_3 we denote by x. Let y be a support vertex adjacent to x. It is easy to see that $A(T)=A(T')\cup\{u,v\}$ is a TDS of the tree T. Thus, $\gamma_t(T)\leq \gamma_t(T')+2$. Now let D be a $\gamma_t(T)$ -set that contains no leaf. By Observation 2.1 we have $v,y\in D$. The vertex v has to have a neighbor in D, thus $u\in D$. It is easy to observe that $D\setminus\{u,v\}$ is a TDS of the tree T'. Therefore, $\gamma_t(T')\leq \gamma_t(T)-2$. We now conclude that $\gamma_t(T)=\gamma_t(T')+2$. We get $\gamma_t(T)=|A(T)|=|A(T')|+2=(n'+s')/2+2=(n-3+s-1)/2+2=(n+s)/2$.

Now assume that T is obtained from T' by operation \mathcal{O}_3 . We have n=n'+4 and s=s'. It is easy to see that $A(T)=A(T')\cup\{u,v\}$ is a TDS of the tree T. Thus, $\gamma_t(T)\leq \gamma_t(T')+2$. Now let us observe that there exists a $\gamma_t(T)$ -set that does not contain the vertices w and t. Let D be such a set. By Observation 2.1 we have $v\in D$. The vertex v has to have a neighbor in D, thus $u\in D$. Observe that $D\setminus\{u,v\}$ is a TDS of the tree T'. Therefore, $\gamma_t(T')\leq \gamma_t(T)-2$. We now conclude that $\gamma_t(T)=\gamma_t(T')+2$. We get $\gamma_t(T)=|A(T)|=|A(T')|+2=(n'+s')/2+2=(n-4+s)/2+2=(n+s)/2$.

We now prove that if a tree attains the bound from Theorem 3, then the tree belongs to the family \mathcal{T} .

Lemma 2.4. Let T be a tree of order n with s support vertices. If $\gamma_t(T) = (n+s)/2$, then $T \in \mathcal{T}$.

Proof. We proceed by induction on the number of vertices of the tree T. If $\operatorname{diam}(T) = 1$, then $T = P_2 \in \mathcal{T}$. Now assume that $\operatorname{diam}(T) = 2$. Thus

T is a star. If $T = P_3$, then $T \in \mathcal{T}$. If T is a star different from P_3 , then $\gamma_t(T) = 2 < 5/2 \le (n+1)/2 = (n+s)/2$.

Now assume that $diam(T) \geq 3$. Thus the order n of the tree T is at least four. Assume that the lemma is true for every tree T' of order n' < n with s' support vertices.

First assume that some support vertex of T, say x, is strong. Let y be a leaf adjacent to x. Let T' = T - y. We have n' = n - 1 and s' = s. Let D' be any $\gamma_t(T')$ -set. By Observation 2.1 we have $x \in D'$. Obviously, D' is a TDS of the tree T. Thus, $\gamma_t(T) \leq \gamma_t(T')$. We now get $\gamma_t(T) \leq \gamma_t(T') \leq (n'+s')/2 = (n-1+s)/2 < (n+s)/2$, a contradiction. Thus every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity diam(T). Let t be a leaf at maximum distance from r, v be the parent of t, and u be the parent of v in the rooted tree. If diam $(T) \geq 4$, then let w be the parent of w. If diam $(T) \geq 5$, then let d be the parent of w. If diam $(T) \geq 6$, then let e be the parent of e. By e0 a vertex e1 and its descendants in the rooted tree e1.

First assume that $d_T(u) \geq 3$. Assume that among the children of u there is a support vertex, say x, different from v. Let $T' = T - T_v$. We have n' = n - 2 and s' = s - 1. Let D' be a $\gamma_t(T')$ -set that contains no leaf. The vertex x has to have a neighbor in D', thus $u \in D'$. It is easy to see that $D' \cup \{v\}$ is a TDS of the tree T. Thus, $\gamma_t(T) \leq \gamma_t(T') + 1$. We now get $\gamma_t(T) \leq \gamma_t(T') + 1 \leq (n' + s')/2 + 1 = (n - 2 + s - 1)/2 + 1 = (n + s)/2 - 1/2 < (n + s)/2$, a contradiction.

Thus, $d_T(u) = 3$ and the child of u other than v, say x, is a leaf. Let T' = T - x. We have n' = n - 1 and s' = s - 1. Let D' be a $\gamma_t(T')$ -set that contains no leaf. The vertex v has to have a neighbor in D', thus $u \in D'$. It is easy to see that D' is a TDS of the tree T. Thus, $\gamma_t(T) \leq \gamma_t(T')$. We now get $\gamma_t(T) \leq \gamma_t(T') \leq (n' + s')/2 = (n - 1 + s - 1)/2 < (n + s)/2$, a contradiction.

Now assume that $d_T(u)=2$. First assume that there is a child of w other than u, say x, such that the distance of w to the most distant vertex of T_x is three. It suffices to consider only the possibility when T_x is a path P_3 . Let $T'=T-T_u$. We have n'=n-3 and s'=s-1. Let D' be any $\gamma_t(T')$ -set. It is easy to see that $D' \cup \{u,v\}$ is a TDS of the tree T. Thus, $\gamma_t(T) \leq \gamma_t(T') + 2$. We now get $\gamma_t(T') \geq \gamma_t(T) - 2 = (n+s)/2 - 2 = (n'+3+s'+1)/2 - 2 = (n'+s')/2$. This implies that $\gamma_t(T') = (n'+s')/2$. By the inductive hypothesis, we have $T' \in \mathcal{T}$. The tree T can be obtained from T' by operation \mathcal{O}_1 . Thus, $T \in \mathcal{T}$.

6 Krzywkowski

Now assume that there is a child of w, say x, such that the distance of w to the most distant vertex of T_x is two. Thus x is a support vertex. Let $T' = T - T_u$. In the same way as in the previous possibility we conclude that $T' \in \mathcal{T}$. The tree T can be obtained from T' by operation \mathcal{O}_2 . Thus, $T \in \mathcal{T}$.

Now assume that some child of w, say x, is a leaf. It suffices to consider only the possibility when $d_T(w)=3$. Let T'=T-t-x. We have n'=n-2 and s'=s-1. Let D' be a $\gamma_t(T')$ -set that contains no leaf. By Observation 2.1 we have $u \in D'$. The vertex u has to have a neighbor in D', thus $w \in D'$. It is easy to observe that $D' \cup \{v\}$ is a TDS of the tree T. Thus, $\gamma_t(T) \leq \gamma_t(T') + 1$. We now get $\gamma_t(T) \leq \gamma_t(T') + 1 \leq (n'+s')/2 + 1 = (n-2+s-1)/2 + 1 = (n+s)/2 - 1/2 < (n+s)/2$, a contradiction.

If $d_T(w)=1$, then $T=P_4$. We have $\gamma_t(T)=2<3=(4+2)/2=(n+s)/2$, a contradiction. Now assume that $d_T(w)=2$. First assume that $d_T(d)\geq 3$. Let $T'=T-T_w$. We have n'=n-4 and s'=s-1. Let D' be any $\gamma_t(T')$ -set. It is easy to see that $D'\cup\{u,v\}$ is a TDS of the tree T. Thus, $\gamma_t(T)\leq \gamma_t(T')+2$. We now get $\gamma_t(T)\leq \gamma_t(T')+2\leq (n'+s')/2+2=(n-4+s-1)/2+2=(n+s)/2-1/2<(n+s)/2$, a contradiction.

If $d_T(d) = 1$, then $T = P_5$. We have $\gamma_t(T) = 3 < 7/2 = (5+2)/2 = (n+s)/2$, a contradiction. Now assume that $d_T(d) = 2$. Let $T' = T - T_w$. We have n' = n-4 and $s' \le s$. Let D' be any $\gamma_t(T')$ -set. It is easy to see that $D' \cup \{u, v\}$ is a TDS of the tree T. Thus, $\gamma_t(T) \le \gamma_t(T') + 2$. We now get $\gamma_t(T') \ge \gamma_t(T) - 2 = (n+s)/2 - 2 \ge (n'+4+s')/2 - 2 = (n'+s')/2$. This implies that $\gamma_t(T') = (n'+s')/2$ and s' = s. Therefore, $T' \in \mathcal{T}$ and the vertex e is not adjacent to any leaf in T. The tree T can be obtained from T' by operation \mathcal{O}_3 . Thus, $T \in \mathcal{T}$.

As an immediate consequence of Lemmas 2.3 and 2.4, we have the following characterization of the trees attaining the bound from Theorem 2.3.

Theorem 2.5. Let T be a tree. Then $\gamma_t(T) = (n+s)/2$ if and only if $T \in \mathcal{T}$.

References

- R. Allan, R. Laskar and S. Hedetniemi, A note on total domination, Discrete Math. 49 (1984), 7–13.
- [2] M. Chellali and T. Haynes, *Total and paired-domination numbers of a tree*, AKCE Int. J. Graphs Comb. 1 (2004), 69–75.

- [3] E. Cockayne, R. Dawes and S. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211–219.
- [4] E. DeLa Viña, C. Larson, E. Craig, R. Pepper and B. Waller, On total domination and support vertices of a tree, AKCE Int. J. Graphs Comb. 7 (2010), 85–95.
- [5] M. El-Zahar, S. Gravier and A. Klobucar, On the total domination number of cross products of graphs, Discrete Math. 308 (2008), 2025–2029.
- [6] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [7] T. Haynes, S. Hedetniemi and P. Slater (eds.), *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.
- [8] S. Thomassé and A. Yeo, Total domination of graphs and small transversals of hypergraphs, Combinatorica 27 (2007), 473–487.

Marcin Krzywkowski

Department of Mathematics, University of Johannesburg, South Africa Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland

Email: marcin.krzywkowski@gmail.com