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Abstract

We give a lower bound for the number of total dominating sets of a
graph together with a characterization of the extremal graphs, for trees
as well as arbitrary connected graphs of given order. Moreover, we obtain
a sharp lower bound involving both the order and the total domination
number, and characterise the extremal graphs as well.
Keywords: total dominating set, total domination number, subdivided
stars, lower bound.
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1 Introduction

A dominating set D is a set of vertices of a graph G with the property that every
vertex of G either lies in D or has a neighbour in D. Total domination is an even
stronger property: D is called a total dominating set of G if every vertex of G
has a neighbour in D, whether or not it lies in D itself. The most classical and
well-studied graph parameter in the context of (total) domination is the (total)
domination number : the domination number γ(G) of a graph G is the smallest
cardinality of a dominating set, and likewise the total domination number γt(G)
is the smallest cardinality of a total dominating set. Numerous upper and lower
bounds and other results on these numbers have been obtained over the years
– we refer to the books [4, 5] by Haynes, Hedetniemi and Slater and the more
recent book [6] by Henning and Yeo, which focuses on total domination, for a
comprehensive treatment of the subject. Comparatively little work has been done
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on the number of (total) dominating sets. These two belong to the class of graph
parameters based on counting subsets with specific properties; other well-studied
examples are the number of independent sets and the number of matchings—see
[10] for a recent survey including these and other examples.

As for the number ∂(G) of dominating sets of a graph G, one has the trivial
bounds

1 ≤ ∂(G) ≤ 2n − 1,

with equality for the empty and complete graphs respectively. Bród and Skupień
[1] studied the number of dominating sets in trees. The maximum of 2n−1 + 1
for trees with n vertices is attained only by the star (except for the cases n = 4
and n = 5, when the path also attains the maximum). The lower bound, on the
other hand, is not only more complicated—the trees attaining it are no longer
unique. We will observe a similar phenomenon for total domination in this paper.
As shown in [11], the lower bound for trees is also sharp for arbitrary connected
graphs and even graphs without isolated vertices. See also the recent paper by
Skupień [9]. For trees, similar results can also be found for the number of efficient
dominating sets, minimal dominating sets and minimal 2-dominating sets (see
[2, 7, 8]) – in these cases, the maximum is more interesting, though.

The focus of this paper is the number of total dominating sets of a graph,
which we will denote by ∂t(G). We have similarly trivial bounds:

0 ≤ ∂t(G) ≤ 2n − n− 1,

with equality for a graph with at least one isolated vertex and the complete
graph respectively. For trees, the upper bound is still quite simple, but it already
illustrates some of our main ideas:

Proposition 1 We have
∂t(T ) ≤ 2n−1 − 1

for every tree T with n vertices, with equality only for the star.

Proof. The statement is trivial for n = 1 and n = 2, so let us assume that n ≥ 3.
Every tree T with at least three vertices has two or more leaves, thus at least
one vertex adjacent to a leaf (we will call such a vertex a support vertex); we
denote this vertex by v. This vertex v has to be part of every total dominating
set. This leaves us with only 2n−1 possible sets, of which {v} is clearly not a total
dominating set (v is not dominated). Thus ∂t(T ) ≤ 2n−1 − 1, and equality can
only hold if v is the only vertex adjacent to a leaf. This only holds for the star.

Just as for the number of dominating sets, the lower bound is more interest-
ing. In the following section, we will show that the minimum number of total
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dominating sets of a tree (connected graph, or even arbitrary graph without com-
ponents of order 1 or 2) with n vertices is of order Θ(9n/7). A precise bound,
along with the characterisation of the extremal graphs, is given in Theorems 5, 7
and 8. In Theorems 16 and 18, we obtain a sharp lower bound for ∂t(G) that
takes the total dominating number into account as well. See Section 3 for details.

2 The general lower bound

In this section, we determine the minimum number of total dominating sets of
a connected graph with n vertices for arbitrary n. In fact, we will show that
the lower bound we obtain remains valid for disconnected graphs as long as we
exclude trivial components of one vertex (for which there is no total dominating
set) or two vertices (for which the only total dominating set consists of both
vertices).

It turns out to be advantageous to prove the lower bound for trees first (Theo-
rem 5), and to generalise it to connected graphs (Theorem 7) and arbitrary graphs
(Theorem 8) later. Leaves and support vertices will play an important role: we
call a vertex with only a single neighbour a leaf, even if the graph is not a tree.
The unique neighbour of a leaf is called a support vertex. The trivial observation
that every support vertex has to be contained in every total dominating set of a
graph will become very useful in the following.

As we will see, the extremal graphs are obtained as unions of subdivided stars :
the subdivided star S(K1,r) is obtained from a star K1,r with r leaves by subdi-
viding each edge into two edges (thus introducing an additional vertex on each
edge).

Let us now begin our discussion by considering trees. We will write mn =
min{∂t(T ) : |T | = n} for the minimum number of total dominating sets of a tree
with n vertices, and Tn = {T : |T | = n, ∂t(T ) = mn} for the set of all trees that
attains this minimum. We start with a very useful lemma on merging trees.

Lemma 2 Let T1 and T2 be two trees and v1, v2 vertices of T1 and T2 respectively.
Consider the tree T obtained by adding the edge v1v2 to the union T1 ∪ T2. We
have

∂t(T ) ≥ ∂t(T1)∂t(T2),

and equality holds if and only if v1 and v2 are at distance 2 from a leaf in T1 and
T2, respectively.

Proof. Obviously, every total dominating set of T1∪T2 is also a total dominating
set of T , which readily proves the inequality: note that ∂t(T1∪T2) = ∂t(T1)∂t(T2),
since every total dominating set of T1 ∪ T2 is the union of a total dominating set
of T1 and a total dominating set of T2, and vice versa. It remains to determine
the cases of equality.
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Assume first that both v1 and v2 have the required property. Consider any
total dominating set D of T , and assume that its restriction to T1 is not total
dominating. The only reason this could happen is that v1 is dominated by v2
in T , but not by any other neighbour. One of these neighbours, however, is a
support vertex in T1 by our assumption. If this support vertex is not present in
D, then its leaf neighbour is not dominated, and we reach a contradiction. Thus
the only total dominating sets of T are obtained as unions of total dominating
sets of T1 and T2.

Now suppose, for instance, that there is no leaf in T1 whose distance to v1 is
2. Then none of v1’s neighbours in T1 is a support vertex in T . It is easy to verify
in this case that D = T \NT1(v1) (i.e., all vertices of T except for v1’s neighbours
in T1) is a total dominating set of T , but the restriction of D to T1 is clearly not
(v1 is not dominated). Thus ∂t(T ) > ∂t(T1)∂t(T2) in this case, and by symmetry
the same argument applies to v2.

The next lemma already gives a recursive characterisation of trees in Tn, i.e.
trees that attain the minimum number of total dominating sets.

Lemma 3 Suppose that T ∈ Tn for some integer n ≥ 3. Then one of the follow-
ing holds:

• T is a subdivided star S(K1,(n−1)/2). This is only possible if n is odd.

• T is a subdivided star S(K1,n/2) with one leaf removed, i.e., T = S(K1,n/2)\
{v} for some leaf v of S(K1,n/2). This is only possible if n is even.

• For some edge e = v1v2 of T , the two components T1 and T2 of T \ {e}
(indices chosen such that v1 ∈ T1, v2 ∈ T2) satisfy T1 ∈ Tk, T2 ∈ Tn−k
for some k ∈ {3, 4, . . . , n − 3}, and there exist leaves u1, u2 in T1 and T2
respectively such that the distance between ui and vi in Ti is 2.

Proof. Suppose first that there exists an edge e with the property that the
two components of T \ {e}, which we call T1 and T2, both contain at least three
vertices. Let k be the number of vertices of T1 (so that n − k is the number of
vertices of T2). By Lemma 2, we have

∂t(T ) ≥ ∂t(T1 ∪ T2) = ∂t(T1)∂t(T2) ≥ mkmn−k. (1)

On the other hand, if we take any two trees S1 ∈ Tk and S2 ∈ Tn−k and select
two vertices u1 ∈ S1 and u2 ∈ S2 such that they are both at distance 2 from
some leaf (this is possible for any tree of order at least 3, see also the proof of
Lemma 14 later), then the tree S obtained from S1 ∪S2 by adding the edge u1u2
satisfies ∂t(S) = ∂t(S1)∂t(S2) = mkmn−k by Lemma 2.

Since we know now that equality can hold in (1), it has to hold for every tree
T ∈ Tn, i.e., every tree that attains the minimum. Then it is clear that T1 ∈ Tk
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and T2 ∈ Tn−k, and again by Lemma 2, the ends of e both have distance 2 from
some leaf in their respective components.

We are left with the possibility that no such edge e exists. This is impossible
if the diameter of T is at least 5, since then the middle edge of a diameter (one
of the two middle edges if the length is even) would have the desired property.
Let us consider the remaining cases:

• If the diameter is 2, then T is a star, and ∂t(T ) = 2n−1 − 1.

• If the diameter is 3, then ∂t(T ) = 2n−2.

• If the diameter is 4, then we are dealing with a star with some subdivided
edges (for all other trees of diameter 4, there exists an edge e as desired). Let
k be the number of non-subdivided edges and ` the number of subdivided
edges, so that k + 2` + 1 = n. We have ∂t(T ) = 2k+` if k 6= 0 and
∂t(T ) = 2` + 1 if k = 0.

The minimum is achieved for either k = 0 or k = 1 in the last case, depending on
whether n is odd or even, and the trees achieving the minimum are as described
in the statement of the lemma (for n = 3 or n = 4, the diameter is less than 4,
but the statement remains true). The respective minima are 2n/2 (n even) and
2(n−1)/2 + 1 (n odd).

Corollary 4 Set s(n) = 2n/2 if n is even and s(n) = 2(n−1)/2 + 1 if n is odd.
From Lemma 3, we immediately obtain the following recursive characterization
of mn:

mn = min
(
{s(n)} ∪ {mkmn−k : 3 ≤ k ≤ n− 3}

)
.

This corollary enables us to determine mn algorithmically for small values of
n, and a pattern readily emerges. The following theorem characterizes mn almost
completely (with only finitely many exceptions):

Theorem 5 Define ck by the following table:

c0 c1 c2 c3 c4 c5 c6
1 174/95 17/9 175/96 172/92 5 173/93

For every tree T with n vertices, we have ∂t(T ) ≥ ck · 9bn/7c, where k ≡ n mod 7.
Equality holds if and only if T is constructed as follows:

• If n ≡ 0 mod 7, then T has to be the union of n
7

copies of the subdivided star
S(K1,3), whose centres are connected to form a tree in an arbitrary way.

• If n ≡ 1 mod 7, then T has to be the union of n−36
7

copies of the subdivided
star S(K1,3) and four copies of the subdivided star S(K1,4), connected in
the same way as in the first case,
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• If n ≡ 2 mod 7, then T has to be the union of n−9
7

copies of the subdivided
star S(K1,3) and one copy of the subdivided star S(K1,4), connected in the
same way as in the first case,

• If n ≡ 3 mod 7, then T has to be the union of n−45
7

copies of the subdivided
star S(K1,3) and five copies of the subdivided star S(K1,4), connected in the
same way as in the first case,

• If n ≡ 4 mod 7, then T has to be the union of n−18
7

copies of the subdivided
star S(K1,3) and two copies of the subdivided star S(K1,4), connected in the
same way as in the first case,

• If n ≡ 5 mod 7, then T has to be the union of n−5
7

copies of the subdivided
star S(K1,3) and one copy of the subdivided star S(K1,2), connected in the
same way as in the first case,

• If n ≡ 6 mod 7, then T has to be the union of n−27
7

copies of the subdivided
star S(K1,3) and three copies of the subdivided star S(K1,4), connected in
the same way as in the first case.

In particular, mn = ck · 9bn/7c (where k ≡ n mod 7) for all n ≥ 39. See Figure 1
for an example of a tree T with 39 vertices that satisfies ∂t(T ) = m39.

Proof. We prove the result by induction on n. The claim is easily verified
directly for small values of n, say up to n = 10. It is also easy to see that
equality holds in all cases that are listed, making use of Lemma 2 and the fact
that ∂t(S(K1,r)) = 2r + 1. Note also that 2n/2 ≥ 2(n−1)/2 + 1 > ck · 9bn/7c for all
n ≥ 10, so the first two cases of Lemma 3 do not apply for n ≥ 10. This means
that mn = mkmn−k for some k.

Suppose that k ≡ i mod 7 and n− k ≡ j mod 7 (0 ≤ i, j ≤ 6). There are two
possibilities:

• If i+ j < 7, then one checks first that cicj ≥ ci+j, so that

mn = mkmn−k ≥ ci9
bk/7c · cj9b(n−k)/7c = cicj9

bn/7c ≥ ci+j9
bn/7c,

which proves the desired inequality. Equality holds for (i, j) ∈ {(0, r) : 0 ≤
r ≤ 6} ∪ {(r, 0) : 0 ≤ r ≤ 6} ∪ {(1, 2), (2, 1), (2, 2), (2, 4), (4, 2)}. In each
case, the induction hypothesis, combined with Lemma 2, shows that T has
to have the form described in the statement of the theorem for equality to
hold.

• If i+ j ≥ 7, then one checks first that cicj ≥ 9ci+j−7, so that

mn = mkmn−k ≥ ci9
bk/7c · cj9b(n−k)/7c = cicj9

bn/7c−1 ≥ ci+j−79
bn/7c,
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which proves the desired inequality again. Equality holds for (i, j) ∈
{(2, 6), (6, 2), (4, 4), (4, 6), (6, 4)}. In each case, the induction hypothesis,
combined with Lemma 2, shows that T has to have the form described in
the statement of the theorem for equality to hold.

Figure 1: A tree with 39 vertices that attains the minimum m39. The centres of
the subdivided stars are indicated by squares.

Remark 6 The only values of n for which mn = ck · 9bn/7c (k ≡ n mod 7) does
not hold are 1, 2, 3, 4, 6, 8, 10, 11, 13, 15, 17, 20, 22, 24, 29, 31, 38. In these cases, the
values of mn are given in the following table:

n 1 2 3 4 6 8 10 11 13
mn 0 1 3 4 8 15 25 33 65

n 15 17 20 22 24 29 31 38
mn 125 225 561 1089 2025 9537 18225 162129

With the exceptions n = 1, n = 2, n = 4 and n = 6, the trees that attain the bound
mn are either subdivided stars or obtained by gluing together several subdivided
stars as in the statement of Theorem 5.

It is obvious that a spanning subgraph H of a graph G can have at most
as many total dominating sets as G (since every total dominating set in H is
automatically a total dominating set in G). It turns out that equality can hold
even if H 6= G. It is interesting to compare this to the situation for independent
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sets: if H is a spanning subgraph of G and H 6= G, then H must always have
strictly more independent sets than G. The following theorem characterizes all
connected graphs that attain the lower bound for the number of total dominating
sets:

Theorem 7 Define ck as in Theorem 5. For every connected graph G with n ≥ 3
vertices we have ∂t(G) ≥ ck · 9bn/7c, where k ≡ n mod 7. Equality holds if and
only if G is constructed in the same way as the trees in Theorem 5, except that
the centres of the subdivided stars can form an arbitrary connected graph, see
Figure 2 for an example

Proof. Since G has at least as many total dominating sets as any of its spanning
trees T , the bound follows trivially from Theorem 5. Equality can only hold if
T is one of the trees described in the statement of this lemma. It remains to
determine when ∂t(G) = ∂t(T ) can hold if T is such a tree.

Note that additional edges between the centres of subdivided stars do not
increase the number of total dominating sets. Each centre of a subdivided star is
adjacent to at least one support vertex, which has to be contained in every total
dominating set. Therefore all the centres are always dominated automatically as
well, which means that additional edges between centres are irrelevant.

However, no other edges can be added without increasing the number of total
dominating sets. Suppose that there is an edge in G that is not an edge of T
and that has a leaf v of T as one of its ends. Let w be the unique neighbour
of v in T . The set V (G) \ {w} is a total dominating set of G, but not of T , so
∂t(G) > ∂t(T ), and equality cannot hold in the theorem.

Likewise, suppose that there is an edge in G that is not an edge of T and that
has a support vertex v of T as one of its ends. Let w1, w2 be the neighbours of
v in T . The set V (G) \ {w1, w2} is a total dominating set of G, but not of T , so
again ∂t(G) > ∂t(T ).

Interestingly enough, the lemma even remains true if disconnected graphs are
allowed, as long as there are no isolated vertices and no components of order 2.

Theorem 8 The lower bound in Theorem 7 remains true if G is a graph whose
components all have at least three vertices. Equality holds for the same graphs as
in Theorem 5 and Theorem 7, except that the centres of the subdivided stars can
induce an arbitrary graph.

Proof. We prove the result by induction on the number r of components of G.
The case r = 1 is already given by Theorem 7. For the induction step, note first
that

∂t(G) =
k∏

j=1

∂t(Gj)
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Figure 2: A connected graph with 39 vertices that attains the minimum. Note
the two additional edges compared to Figure 1 that do not change the number
of total dominating sets.

if G1, G2, . . . , Gk are the connected components of a graph G. Let H1 be one
of the components of G, and let H2 = G \ H1 be the rest. We can apply the
induction hypothesis to H1 and H2. Let k be the number of vertices of H1,
and accordingly n − k the number of vertices of H2. Suppose that k ≡ i mod 7
and n − k ≡ j mod 7 (0 ≤ i, j ≤ 6). It was already mentioned in the proof of
Theorem 5 that cicj ≥ ci+j if i+ j < 7 and cicj ≥ 9ci+j−7 otherwise.

In the former case (i+ j < 7), we obtain

∂t(G) = ∂t(H1)∂t(H2) ≥ ci9
bk/7c · cj9b(n−k)/7c = cicj9

bn/7c ≥ ci+j9
bn/7c,

and in the latter (i+ j ≥ 7)

∂t(G) = ∂t(H1)∂t(H2) ≥ ci9
bk/7c · cj9b(n−k)/7c = cicj9

bn/7c−1 ≥ ci+j−79
bn/7c.

In either case, the cases of equality are the same as in the proof of Theorem 5,
and the induction hypothesis shows that equality holds if and only if G has the
form described in the statement of the theorem.

3 Number of total dominating sets versus total

domination number

In this section, we extend our results further by taking the total domination
number into account as well. Similar results have been determined for the number
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of dominating sets and the domination number [11], or the number of independent
sets and the independence number [3]. The graphs that attain the minimum in
Theorems 5, 7 and 8 have a total domination number of approximately 4n

7
. In

the following, we will determine the graphs that minimise the number of total
dominating sets when the order and the total domination number are fixed at
the same time. When the total domination number is comparatively low, this is
almost trivial:

Theorem 9 For every connected graph G with n ≥ 3 vertices and total domina-
tion number k, we have the inequality

∂t(G) ≥ 2n−k.

Equality can only hold if k ≤ n
2
, and in this case it holds if and only if G has a

minimum total dominating set consisting solely of support vertices (equivalently,
if every vertex is either a support vertex or adjacent to a support vertex).

Proof. Consider an arbitrary minimum total dominating set D of G; clearly,
every superset of D is still total dominating, and there are 2n−k such supersets.
This gives us immediately the lower bound, and it remains to determine the cases
of equality. Equality can only hold if every total dominating set has to contain
D. In particular, for every v ∈ D, the set V (G)\{v} cannot be total dominating.
This means that v must have a neighbour w that is only adjacent to v and is
therefore not dominated by V (G) \ {v}. In other words, v has to be a support
vertex. Since n ≥ 3, no vertex of D can be both a leaf and a support vertex. So
if every vertex of D has a leaf neighbour associated to it, D cannot contain more
than half of the vertices. This completes the proof.

Remark 10 The inequality is also true for disconnected graphs without isolated
vertices (or even disconnected graphs with isolated vertices if we interpret k as
∞ and 2n−k as 2−∞ = 0 in this case). The statement on equality remains true
for disconnected graphs if every connected component has at least three vertices
(since one can apply it to every connected component).

Theorem 9 settles the problem if the total domination number k is at most
n
2
, and even for k > n

2
if we allow connected components consisting of only

two vertices. A more interesting situation arises if there are no such connected
components and k > n

2
. As a first observation, we find that the problem can be

reduced to trees in this case:

Lemma 11 Let G be a connected graph. There exists a spanning tree T of G
such that γt(T ) = γt(G) and ∂t(T ) ≤ ∂t(G).
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Proof. The inequality ∂t(T ) ≤ ∂t(G) is trivial and holds for every spanning
tree T of G, since every total dominating set of T is also a total dominating
set of G. Thus it suffices to prove that there exists a spanning tree of G with
the same total domination number. Take any total dominating set D of G; its
vertices must induce a graph without isolated vertices. Therefore, we can find a
spanning forest of D that only contains edges of G and still does not have isolated
vertices. For every vertex of G that does not lie in D, there must be a neighbour
in D (since D is a total dominating set), so we can add an edge to a vertex of
D for each vertex outside of D. The result is a spanning forest of G, which we
can extend to a spanning tree by adding edges between connected components
until we obtain a tree T . Note that D is still a total dominating set of T , so
γt(T ) ≤ |D| = γt(G). On the other hand, the inequality γt(T ) ≥ γt(G) is trivial
(again, since every total dominating set of T is a total dominating set of G), so
we are done.

Our next lemmas show how trees can be split and pieced together:

Lemma 12 Every tree that is not a star has a minimum total dominating set
that does not contain any leaves.

Proof. Consider a minimum total dominating set D containing the least possible
number of leaves. Let v be any leaf contained in D, and let w be its unique
neighbour. The only possible reason for v to be contained in D is to dominate
w. If our tree is not a star, w must have a non-leaf neighbour x. If x is contained
in D, we can remove v from D, contradicting minimality of D. Otherwise, we
can replace v by x in D, obtaining a minimum total dominating set with fewer
leaves. This gives us another contradiction, so D cannot contain any leaves at
all.

Lemma 13 Let T be a tree with at least three non-leaves, and suppose that the
non-leaves do not induce a star. There exists an edge of T such that its removal
yields two trees T1 and T2 with at least three vertices for which

γt(T ) = γt(T1) + γt(T2).

Proof. Consider a minimum total dominating set D of T that only consists
of non-leaves. Such a set exists by the previous lemma. We distinguish three
different cases:

Case 1: Suppose that D consists of all non-leaves. Since D does not induce a star,
there exists an edge whose removal splits T into two trees T1 and T2 each
of which contains at least two vertices of D. Both T1 and T2 must also
contain leaves of T , so they have at least three vertices each. It remains to
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show that γt(T ) = γt(T1) + γt(T2). The inequality γt(T ) ≤ γt(T1) + γt(T2)
is trivial since T1 ∪ T2 is a subgraph of T . On the other hand, D ∩ T1 and
D ∩ T2 contain all non-leaves of T1 and T2 respectively, so by the previous
lemma, we have

γt(T1) ≤ |D ∩ T1| and γt(T2) ≤ |D ∩ T2|.

It follows that

γt(T ) = |D| = |D ∩ T1|+ |D ∩ T2| ≥ γt(T1) + γt(T2),

which completes the proof in this case.

Case 2: Suppose that there are some non-leaves not contained in D. Let D be
the set of all such non-leaves, and assume first that there are two adjacent
vertices v and w in D.

If we remove the edge vw from T , we obtain two trees T1 and T2. Both of
them must contain at least two vertices of D (one vertex each to dominate
v and w respectively, and one more in each tree to dominate those), so T1
and T2 have at least three vertices each. Again, it remains to prove that
γt(T ) = γt(T1)+γt(T2), and the inequality γt(T ) ≤ γt(T1)+γt(T2) is trivial.
On the other hand, since v and w are not elements of D, the edge vw is
immaterial and D is still a total dominating set of T1 ∪ T2. Hence we have
equality:

γt(T ) = γt(T1) + γt(T2),

as required.

Case 3: Now suppose that there are non-leaves not contained in D, but no two of
them are adjacent. Take any vertex v contained in the set D of non-leaves
that do not belong to D.

Since v is not a leaf, it has at least two neighbours. None of them can
be a leaf, since v would have to be contained in D to make D a total
dominating set. Hence all neighbours of v are vertices in D. Let w be any
such neighbour. As in the previous case, we remove vw to obtain two trees
T1 and T2. Both need to contain at least two elements of D (a neighbour of
v and another vertex to dominate the neighbour) as well as at least one leaf
of T , thus at least three vertices. Once again, D is still a total dominating
set of T1 ∪ T2: the edge vw could only be relevant for dominating v, but v
has at least one more neighbour in D and is thus still dominated. Hence
we also have

γt(T ) = γt(T1) + γt(T2)

in this case.
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Lemma 14 Let T1 and T2 be any two trees with at least three vertices. There
exist two vertices v1 and v2 in T1 and T2 respectively such that the tree T obtained
from the union of T1 and T2 by adding an edge between v1 and v2 satisfies

γt(T ) = γt(T1) + γt(T2) and ∂t(T ) = ∂t(T1)∂t(T2).

Proof. Since T1 and T2 both have at least three vertices, there exist vertices v1
and v2 in T1 and T2 that are at distance 2 from a leaf (start at any leaf, and
take any neighbour of the leaf’s unique neighbour other than the leaf itself). As
shown in the proof of Lemma 2, the tree T obtained by adding the edge v1v2 to
the union of T1 and T2 has the property that all total dominating sets of T are
the union of a total dominating set of T1 and a total dominating set of T2, and
vice versa. The desired statement follows immediately.

Now we are able to provide a recursive characterisation of “optimal” trees
(trees minimising the number of total dominating sets). Let m(n, k) be the
minimum number of total dominating sets of a tree (or arbitrary connected graph
in view of Lemma 11) with n vertices and total domination number k.

Lemma 15 Let T be an optimal tree with n vertices and total domination number
k, i.e. ∂t(T ) = m(n, k). Then one of the following statements holds:

• the non-leaves of T induce a star (possibly a degenerate star with only one
or two vertices),

• One can remove an edge from T such that the resulting trees T1 and T2
satisfy the following, where |T1| = n1, |T2| = n2, γt(T1) = k1 and γt(T2) =
k2:

– n = n1 + n2 and k = k1 + k2,

– T1 and T2 are optimal trees, i.e. ∂t(T1) = m(n1, k1) and ∂t(T2) =
m(n2, k2),

– m(n, k) = ∂t(T ) = ∂t(T1)∂t(T2) = m(n1, k1)m(n2, k2).

Proof. If the non-leaves do not induce a star, we can split T into two trees T1
and T2 with at least three vertices and γt(T ) = k = k1 + k2 = γt(T1) + γt(T2)
by Lemma 13. Of course, |T | = n = n1 + n2 = |T1| + |T2| holds trivially. By
Lemma 2, we have

m(n, k) = ∂t(T ) ≥ ∂t(T1)∂t(T2) ≥ m(n1, k1)m(n2, k2). (2)
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On the other hand, if we take two optimal trees S1 and S2 with |S1| = n1,
|S2| = n2, γt(S1) = k1 and γt(S2) = k2, we can (by Lemma 14) add an edge
between S1 and S2 to obtain a tree S with |S| = |S1| + |S2| = n1 + n2 = n,
γt(S) = γt(S1) + γt(S2) = k1 + k2 = k and

∂t(S) = ∂t(S1)∂t(S2) = m(n1, k1)m(n2, k2),

so equality must hold in (2) for T to be optimal. This means that ∂t(T1) =
m(n1, k1), ∂t(T2) = m(n2, k2) and

m(n, k) = ∂t(T ) = ∂t(T1)∂t(T2) = m(n1, k1)m(n2, k2),

which proves the lemma.

Now we are ready to determine m(n, k) for all possible values of n and k and
to characterise the extremal graphs:

Theorem 16 Define the function f : [0, 2
3
]→ R by

f(x) = (1− x) log 2

if x ≤ 1
2
, and by

f(x) =
(
(2r + 1)x− (r + 1)

)
log(2r−1 + 1) +

(
r − (2r − 1)x

)
log(2r + 1)

if r+1
2r+1

< x ≤ r
2r−1 for an integer r ≥ 2. For every connected graph G with n ≥ 3

vertices and total domination number k, we have

∂t(G) ≥ exp
(
f
(k
n

)
· n
)
. (3)

Equality holds

• for k ≤ n
2
: if and only if every vertex is either a support vertex or adjacent

to a support vertex, and there are exactly k support vertices,

• for r+1
2r+1

n < k ≤ r
2r−1n, where r is an integer ≥ 2: if and only if G is the

union of (2r + 1)k − (r + 1)n subdivided stars S(K1,r−1) and rn − (2r −
1)k subdivided stars S(K1,r), with additional edges between the centres that
form a connected graph, but no further additional edges. Note that S(K1,1)
is a path with three vertices; either leaf of S(K1,1) counts as a centre in
this context. See Figure 3 for an example with 21 vertices and domination
number 13.
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Figure 3: A connected graph with 21 vertices and domination number 13 that
attains the minimum. As in Figure 1, centres of subdivided stars are indicated
by squares.

Remark 17 The function f is well-defined since[
0,

1

2

]
∪
∞⋃
r=2

( r + 1

2r + 1
,

r

2r − 1

]
=
[
0,

2

3

]
,

where the union is disjoint, and it is also easily seen to be continuous (see Fig-
ure 4).

It also deserves to be mentioned that every tree (thus every connected graph)
with n ≥ 3 vertices has a total domination number of at most 2n

3
. This can be

seen e.g. by means of Lemma 13 and induction. Thus it is sufficient to define
f(x) for x ≤ 2

3
.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

Figure 4: The function f(x) in Theorem 16.

Proof. Let us start with the crucial observation that the function f is convex.
This is easy to verify: since f is piecewise linear, it is sufficient to show that the
gradients, which are given by

f(r/(2r − 1))− f((r + 1)/(2r + 1))

r/(2r − 1)− (r + 1)/(2r + 1)
= (2r+1) log(2r−1 +1)−(2r−1) log(2r−1),

15



are decreasing in r, and that the limit as r →∞ is − log 2, which is the gradient
on the interval [0, 1

2
]. Both are simple exercises.

For k ≤ n
2
, the statement is already given by Theorem 9. For k > n

2
, we

use induction. The inequality and the cases of equality are readily verified for
n ∈ {3, 4, 5}. Now suppose that n ≥ 6. By Lemma 11, it suffices to prove the
inequality for a spanning tree T of G. By Lemma 15, there are two possibilities:

• The non-leaves of T induce a star: each of the non-leaves must be adjacent
to at least one leaf. Hence the number of non-leaves is at most n+1

2
. If it

is n
2

or less, then k ≤ n
2

by Lemma 12, which has already been discussed.
So the number of non-leaves is exactly n+1

2
, which is only possible if G is

an extended star: G = S(K1,r), where n = 2r + 1. In this case, we have
γt(G) = r + 1 and ∂t(G) = 2r + 1, so

∂t(G) = 2r + 1 = exp
(
f
( r + 1

2r + 1

)
· (2r + 1)

)
by definition of f .

• Otherwise, we can split T into two trees T1 and T2 by removing an edge.
Let these two trees have n1 and n2 vertices respectively, and let their total
domination numbers be k1 and k2 respectively. We have

∂t(T ) = ∂t(T1)∂t(T2)

≥ exp
(
f
(k1
n1

)
n1

)(
f
(k2
n2

)
n2

)
= exp

((
f
(k1
n1

)n1

n
+ f
(k2
n2

)n2

n

)
· n
)

≥ exp
((
f
(k1
n1

· n1

n
+
k2
n2

· n2

n

)
· n
)

= exp
(
f
(k1 + k2

n

)
· n
)

= exp
(
f
(k
n

)
· n
)

by the induction hypothesis and convexity of f . For equality to hold, k1
n1

,
k2
n2

and k
n

have to belong to an interval on which f is linear, i.e. an interval

of the form [ r+1
2r+1

, r
2r−1 ]. We can also use the induction hypothesis on the

shape of T1 and T2 to show that T must also have the shape described in the
statement of the theorem (Lemma 2 is used to prove that the edge between
T1 and T2 must connect two centres of extended stars for equality to hold).
Moreover, we can show in the same way as in the proof of Theorem 7 that
arbitrary edges between centres of extended stars can be added without
changing the total dominating sets (and thus ∂t and γt), but no other edges
can be added without increasing ∂t.

Conversely, it is easily verified that every graph with the structure described
in the statement of the theorem satisfies (3) with equality.
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Theorem 16 remains correct for disconnected graphs, provided that each con-
nected component has at least three vertices. This is obtained by applying The-
orem 16 to each connected component and using the convexity of f once again:

Theorem 18 Let f be defined as in Theorem 16. For every graph G with n
vertices and total domination number k whose connected components have at
least three vertices, the following inequality holds:

∂t(G) ≥ exp
(
f
(k
n

)
· n
)
.

Equality holds

• for k ≤ n
2
: if and only if every vertex is either a support vertex or adjacent

to a support vertex, and there are exactly k support vertices,

• for r+1
2r+1

n < k ≤ r
2r−1n, where r is an integer ≥ 2: if and only if G is the

union (2r + 1)k − (r + 1)n subdivided stars S(K1,r−1) and rn − (2r − 1)k
subdivided stars S(K1,r), with an arbitrary set of edges connecting centres
of these subdivided stars, but no other edges.

Remark 19 Noticing that f attains its minimum at 4
7
, Theorems 7 and 8 can

also be obtained as corollaries of Theorems 16 and 18 respectively with some
additional work.
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