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The hat problem on a union of disjoint graphs

Abstract. The topic is the hat problem in which each of n players is randomly
fitted with a blue or red hat. Then everybody can try to guess simultaneously his
own hat color by looking at the hat colors of the other players. The team wins if
at least one player guesses his hat color correctly, and no one guesses his hat color
wrong; otherwise the team loses. The aim is to maximize the probability of winning.
In this version every player can see everybody excluding himself. We consider such
a problem on a graph, where vertices correspond to players, and a player can see
each player to whom he is connected by an edge. The solution of the hat problem
is known for cycles and bipartite graphs. We investigate the problem on a union of
disjoint graphs.
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1. Introduction. In the hat problem, a team of n players enters a room and
a blue or red hat is randomly placed on the head of each player. Each player can
see the hats of all of the other players but not his own. No communication of any
sort is allowed, except for an initial strategy session before the game begins. Once
they have had a chance to look at the other hats, each player must simultaneously
guess the color of his own hat or pass. The team wins if at least one player guesses
his hat color correctly and no one guesses his hat color wrong; otherwise the team
loses. The aim is to maximize the probability of winning.

The hat problem with seven players, called the “seven prisoners puzzle”, was
formulated by T. Ebert in his Ph.D. Thesis [12]. The hat problem was also the
subject of articles in The New York Times [28], Die Zeit [6], and abcNews [27]. It
was also one of the Berkeley Riddles [4].

The hat problem with 2k − 1 players was solved in [14], and for 2k players in
[11]. The problem with n players was investigated in [7]. The hat problem and
Hamming codes were the subject of [8]. The generalized hat problem with n people
and q colors was investigated in [26].

There are many known variations of the hat problem (for a comprehensive list,
see [24]). For example in [20] there was considered a variation in which players do
not have to guess their hat colors simultaneously. In the papers [1, 10, 19] there
was considered a variation in which passing is not allowed, thus everybody has to
guess his hat color. The aim is to maximize the number of correct guesses. The
authors of [17] investigated several variations of the hat problem in which the aim
is to design a strategy guaranteeing a desired number of correct guesses. In [18]
there was considered a variation in which the probabilities of getting hats of each
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colors do not have to be equal. The authors of [2] investigated a problem similar
to the hat problem. There are n players which have random bits on foreheads, and
they have to vote on the parity of the n bits.

The hat problem and its variations have many applications and connections
to different areas of science (for a survey on this topic, see [24]), for example:
information technology [5], linear programming [17], genetic programming [9], eco-
nomics [1, 19], biology [18], approximating Boolean functions [2], and autoreducibil-
ity of random sequences [3, 12–15]. Therefore, it is hoped that the hat problem on
a graph considered in this paper is worth exploring as a natural generalization, and
may also have many applications.

We consider the hat problem on a graph, where vertices correspond to players
and a player can see each player to whom he is connected by an edge. This variation
of the hat problem was first considered in [21]. There were proven some general
theorems about the hat problem on a graph, and the problem was solved on trees.
Additionally, there was considered the hat problem on a graph such that the only
known information are degrees of vertices. In [23] the hat problem was solved on
the cycle C4. In [25] the problem was solved on cycles on at least nine vertices.
Then the problem was solved on all odd cycles [22]. Uriel Feige [16] conjectured
that for any graph the maximum chance of success in the hat problem is equal
to the maximum chance of success for the hat problem on the maximum clique
in the graph. He provided several results that support this conjecture, and solved
the hat problem for bipartite graphs and planar graphs containing a triangle. He
also proved that the hat number of a union of disjoint graphs is the maximum hat
number among that graphs.

In this paper we consider the hat problem on a union of disjoint graphs. By the
union of two strategies (each for another graph) we mean the strategy for the union
of that graphs such that every vertex behaves in the same way as in the proper
strategy which is an element of the union. First, we give a sufficient condition for
that the union of strategies gives worse chance of success than some component of
the union. Next, we characterize when the union of strategies gives at least the
same (better, the same, respectively) chance of success as each component of the
union. Finally, we prove that there exists a disconnected graph for which there
exists an optimal strategy such that every vertex guesses its color.

2. Preliminaries. For a graph G, the set of vertices and the set of edges we
denote by V (G) and E(G), respectively. If H is a subgraph of G, then we write
H ⊆ G. Let v ∈ V (G). The degree of vertex v, that is, the number of its neighbors,
we denote by dG(v). The path (complete graph, respectively) on n vertices we
denote by Pn (Kn, respectively).

Let V (G) = {v1, v2, . . . , vn}. By Sc = {1, 2} we denote the set of colors, where
1 corresponds to blue, and 2 corresponds to red.

By a case for a graph G we mean a function c : V (G) → {1, 2}, where c(vi)
means color of vertex vi. The set of all cases for the graph G we denote by C(G),
of course |C(G)| = 2|V (G)|.

By a situation of a vertex vi we mean a function si : V (G)→ Sc∪{0} = {0, 1, 2},
where si(vj) ∈ Sc if vi and vj are adjacent, and 0 otherwise. The set of all possible
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situations of vi in the graph G we denote by Sti(G), of course |Sti(G)| = 2dG(vi).
We say that a case c for the graph G corresponds to a situation si of vertex vi

if c(vj) = si(vj), for every vj adjacent to vi. This implies that a case corresponds
to a situation of vi if every vertex adjacent to vi in that case has the same color as
in that situation. Of course, to every situation of the vertex vi correspond exactly
2|V (G)|−dG(vi) cases.

By a guessing instruction of a vertex vi ∈ V (G) we mean a function gi : Sti(G)
→ Sc ∪ {0} = {0, 1, 2}, which for a given situation gives the color vi guesses it is,
or 0 if vi passes. Thus, a guessing instruction is a rule determining the behavior of
a vertex in every situation.

Let c be a case, and let si be the situation (of vertex vi) corresponding to that
case. The guess of vi in the case c is correct (wrong, respectively) if gi(si) = c(vi)
(0 6= gi(si) 6= c(vi), respectively). By result of the case c we mean a win if at least
one vertex guesses its color correctly, and no vertex guesses its color wrong, that is,
gi(si) = c(vi) (for some i) and there is no j such that 0 6= gj(sj) 6= c(vj). Otherwise
the result of the case c is a loss.

By a strategy for the graph G we mean a sequence (g1, g2, . . . , gn), where gi is
the guessing instruction of vertex vi. The family of all strategies for a graph G we
denote by F(G).

If S ∈ F(G), then the set of cases for the graph G for which the team wins (loses,
respectively) using the strategy S we denote by W (S) (L(S), respectively). The
set of cases for which the team loses, and some vertex guesses its color (no vertex
guesses its color, respectively) we denote by Ls(S) (Ln(S), respectively). By the
chance of success of the strategy S we mean the number p(S) = |W (S)|/|C(G)|. By
the hat number of the graph G we mean the number h(G) = max{p(S) : S ∈ F(G)}.
We say that a strategy S is optimal for the graph G if p(S) = h(G). The family of
all optimal strategies for the graph G we denote by F0(G).

By solving the hat problem on a graph G we mean finding the number h(G).
Since for every graph we can apply a strategy in which one vertex always guesses

it has, let us say, the first color, and the other vertices always pass, we immediately
get the following lower bound on the hat number of a graph.

Fact 2.1 For every graph G we have h(G) ≥ 1/2.

The next solution of the hat problem on paths is a result from [21].

Theorem 2.2 For every path Pn we have h(Pn) = 1/2.

3. Results. Let G and H be vertex-disjoint graphs, and let S1 ∈ F(G)
and S2 ∈ F(H). By the union of the strategies S1 and S2 we mean the strategy
S ∈ F(G ∪H) such that every vertex of G behaves in the same way as in S1, and
every vertex of H behaves in the same way as in S2. If S is the union of S1 and S2,
then we write S = S1 ∪ S2.

From now writing that G and H are graphs, we assume that they are vertex-
disjoint.
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In the following theorem we give a sufficient condition for that the union of
strategies gives worse chance of success than some component of the union.

Theorem 3.1 Let G and H be graphs, and let S = S1 ∪ S2, where S1 ∈ F(G)
and S2 ∈ F(H). Assume that p(S1) > 0 and p(S2) > 0. If |Ln(S1)| · |Ln(S2)|
< |Ls(S1)| · |Ls(S2)|, then p(S) < max{p(S1), p(S2)}.

Proof. First, let us observe that |Ls(S1)| > 0, otherwise no vertex guesses its color,
and therefore |W (S1)| = 0. Consequently, p(S1) = 0, a contradiction. Similarly we
get |Ls(S2)| > 0. Now let us consider the strategy S = S1∪S2 for the graph G∪H.
The team wins if at least one vertex guesses its color correctly, and no vertex guesses
its color wrong, thus the team wins if:

(i) some vertex of G guesses its color correctly and no vertex of G guesses its
color wrong, and some vertex of H guesses its color correctly and no vertex
of H guesses its color wrong, or

(ii) some vertex of G guesses its color correctly and no vertex of G guesses its
color wrong, and no vertex of H guesses its color, or

(iii) no vertex of G guesses its color, and some vertex of H guesses its color correctly
and no vertex of H guesses its color wrong.

This implies that

|W (S)| = |W (S1)||W (S2)|+ |W (S1)||Ln(S2)|+ |Ln(S1)||W (S2)|.

Since |C(G ∪H)| = |C(G)||C(H)|, we get

p(S) =
|W (S)|
|C(G ∪H)|

=
|W (S1)||W (S2)|+ |W (S1)||Ln(S2)|+ |Ln(S1)||W (S2)|

|C(G)||C(H)|
.

We have

p(S) ≥ max{p(S1), p(S2)} ⇔ (p(S) ≥ p(S1) and p(S) ≥ p(S2)).

Now we get the following chain of equivalences

p(S1) ≤ p(S) ⇔ |W (S1)|
|C(G)| ≤

|W (S1)||W (S2)|+ |W (S1)||Ln(S2)|+ |Ln(S1)||W (S2)|
|C(G)||C(H)|

⇔ |W (S1)||C(H)| ≤ |W (S1)||W (S2)|+ |W (S1)||Ln(S2)|

+ |Ln(S1)||W (S2)|

⇔ |C(H)| ≤ |W (S2)|+ |Ln(S2)|+
|Ln(S1)||W (S2)|
|W (S1)|

⇔ |Ls(S2)| ≤
|Ln(S1)||W (S2)|
|W (S1)|

.

Similarly we get
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p(S) ≥ p(S2)⇔
|Ln(S2)||W (S1)|
|W (S2)|

≥ |Ls(S1)|.

Therefore we have
p(S) ≥ max{p(S1), p(S2)}

if and only if

|Ln(S1)||W (S2)|
|W (S1)|

≥ |Ls(S2)| and
|Ln(S2)||W (S1)|
|W (S2)|

≥ |Ls(S1)|.

Consequently,

p(S) ≥ max{p(S1), p(S2)} ⇒ |Ln(S1)| · |Ln(S2)| ≥ |Ls(S1)| · |Ls(S2)|.

Equivalently,

|Ln(S1)| · |Ln(S2)| < |Ls(S1)| · |Ls(S2)| ⇒ p(S) < max{p(S1), p(S2)}.

Corollary 3.2 Let G and H be graphs, and let S = S1∪S2, where S1 ∈ F(G) and
S2 ∈ F(H). Assume that p(S1) > 0 and p(S2) > 0. If |Ln(S1)| = 0 or |Ln(S2)| = 0,
then p(S) < max{p(S1), p(S2)}.

Proof As we have observed in the proof of Theorem 3.1, we have |Ls(S1)| > 0
and |Ls(S2)| > 0. Therefore |Ln(S1)| · |Ln(S2)| = 0 < |Ls(S1)| · |Ls(S2)|. Now, by
Theorem 3.1 we have p(S) < max{p(S1), p(S2)}. �

From now writing S1 ∈ F(G) and S2 ∈ F(H), we assume that p(S1) > 0,
p(S2) > 0, and |Ln(S1)| · |Ln(S2)| ≥ |Ls(S1)| · |Ls(S2)|.

The following theorem determines when the union of strategies gives at least the
same chance of success as each component of the union.

Theorem 3.3 If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and
S2 ∈ F(H), then

p(S) ≥ max{p(S1), p(S2)} ⇔
|W (S1)|
|W (S2)|

∈
[
|Ls(S1)|
|Ln(S2)|

;
|Ln(S1)|
|Ls(S2)|

]
.

Proof. From the proof of Theorem 3.1 we know that

p(S) ≥ max{p(S1), p(S2)}

if and only if

|Ln(S1)||W (S2)|
|W (S1)|

≥ |Ls(S2)| and
|Ln(S2)||W (S1)|
|W (S2)|

≥ |Ls(S1)|.

Since |Ln(S1)| > 0, |Ln(S2)| > 0, and |Ls(S2)| > 0 (see the proof of Theorem 3.1),
the condition above is equivalent to that

|W (S1)|
|W (S2)|

≤ |Ln(S1)|
|Ls(S2)|

and
|W (S1)|
|W (S2)|

≥ |Ls(S1)|
|Ln(S2)|

,
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that is
|Ls(S1)|
|Ln(S2)|

≤ |W (S1)|
|W (S2)|

≤ |Ln(S1)|
|Ls(S2)|

.

The interval [
|Ls(S1)|
|Ln(S2)|

;
|Ln(S1)|
|Ls(S2)|

]
is nonempty, because |Ln(S1)| · |Ln(S2)| ≥ |Ls(S1)| · |Ls(S2)|. Concluding,

p(S) ≥ max{p(S1), p(S2)} ⇔
|W (S1)|
|W (S2)|

∈
[
|Ls(S1)|
|Ln(S2)|

;
|Ln(S1)|
|Ls(S2)|

]
.

Corollary 3.4 If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and
S2 ∈ F(H), then

p(S) < max{p(S1), p(S2)} ⇔
|W (S1)|
|W (S2)|

/∈
[
|Ls(S1)|
|Ln(S2)|

;
|Ln(S1)|
|Ls(S2)|

]
.

The following two theorems determine when the union of strategies gives better
(or the same) chance of success than each component of the union. The proof of each
one of these two theorems is similar to proofs of Theorems 3.1 and 3.3. Therefore
we do not prove them.

Theorem 3.5 If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and
S2 ∈ F(H), then

p(S) > max{p(S1), p(S2)} ⇔
|W (S1)|
|W (S2)|

∈
(
|Ls(S1)|
|Ln(S2)|

;
|Ln(S1)|
|Ls(S2)|

)
.

Theorem 3.6 If G and H are graphs and S = S1 ∪ S2, where S1 ∈ F(G) and
S2 ∈ F(H), then

p(S) = p(S1)⇔
|W (S1)|
|W (S2)|

=
|Ln(S1)|
|Ls(S2)|

and

p(S) = p(S2)⇔
|W (S1)|
|W (S2)|

=
|Ls(S1)|
|Ln(S2)|

.

Corollary 3.7 Assume that G and H are graphs, and S = S1 ∪ S2, where S1

∈ F(G) and S2 ∈ F(H). Let i ∈ {1, 2} be such that p(Si) = max{p(S1), p(S2)},
and let j ∈ {1, 2}, j 6= i. Then

p(S) = max{p(S1), p(S2)} ⇔
|W (Si)|
|W (Sj)|

=
|Ln(Si)|
|Ls(Sj)|

.
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It is possible to prove that there exists a disconnected graph for which there
exists an optimal strategy such that every vertex guesses its color. First, we solve
the hat problem on such graph, K2 ∪K2.

Fact 3.8 h(K2 ∪K2) = 1/2.

Proof We have K2 ∪ K2 ⊆ P4, thus h(K2 ∪ K2) ≤ h(P4). By Theorem 2.2 we
have h(P4) = 1/2. Therefore h(K2 ∪K2) ≤ 1/2. On the other hand, by Fact 2.1
we have h(K2 ∪K2) ≥ 1/2. �

Fact 3.9 There exists an optimal strategy for the graph K2 ∪K2 such that every
vertex guesses its color.

Proof Let S′ = (g1, g2) ∈ F(K2) be the strategy as follows.

g1(s1) =

{
1 if s1(v2) = 1,
0 otherwise;

g2(s2) =

{
2 if s2(v1) = 2,
0 otherwise.

It means that the vertices proceed as follows.

• The vertex v1. If v2 has the first color, then it guesses it has the first color,
otherwise it passes.

• The vertex v2. If v1 has the second color, then it guesses it has the second
color, otherwise it passes.

All cases we present in Table 1, where the symbol + means correct guess (success),
− means wrong guess (loss), and blank square means passing.

No The color of The guess of Result
v1 v2 v1 v2

1 1 1 + +
2 1 2 −
3 2 1 − − −
4 2 2 + +

Table 1

From Table 1 we know that |W (S′)| = 2, |Ln(S′)| = 1, and |Ls(S′)| = 1. Since
|C(K2)| = 4, we get p(S′) = |W (S′)|/|C(K2)| = 2/4 = 1/2. Let S = S1 ∪ S2

∈ F(K2 ∪K2), where S1 = S2 = S′. We have |W (S1)|/|W (S2)| = |W (S′)|/|W (S′)|
= 1 and |Ln(S1)|/|Ls(S2)| = |Ln(S′)|/|Ls(S′)| = 1/1 = 1. Since |W (S1)|/|W (S2)|
= |Ln(S1)|/|Ls(S2)|, by Theorem 3.6 we get p(S) = p(S1). We have S1 = S′ and
p(S′) = 1/2, thus p(S) = 1/2. By Fact 3.8 we have h(K2 ∪K2) = 1/2. This implies
that the strategy S is optimal. In this strategy every vertex guesses its color. �
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Now we prove this fact elementary.

Proof Let E(K2 ∪K2) = {v1v2, v3v4}, and let S = (g1, g2, g3, g4) be the strategy
for K2 ∪K2 as follows.

g1(s1) =

{
1 if s1(v2) = 1,
0 otherwise;

g2(s2) =

{
2 if s2(v1) = 2,
0 otherwise;

g3(s3) =

{
1 if s3(v4) = 1,
0 otherwise;

g4(s4) =

{
2 if s4(v3) = 2,
0 otherwise.

It means that the vertices proceed as follows.

• The vertex v1. If v2 has the first color, then it guesses it has the first color,
otherwise it passes.

• The vertex v2. If v1 has the second color, then it guesses it has the second
color, otherwise it passes.

• The vertex v3. If v4 has the first color, then it guesses it has the first color,
otherwise it passes.

• The vertex v4. If v3 has the second color, then it guesses it has the second
color, otherwise it passes.

All cases we present in Table 2. From this table we get |W (S)| = 8. We have
|C(K2 ∪K2)| = 16, thus p(S) = 8/16 = 1/2. Similarly as in the previous proof we
conclude that the strategy S is optimal. In this strategy every vertex guesses its
color. �
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No The color of The guess of Result
v1 v2 v3 v4 v1 v2 v3 v4

1 1 1 1 1 + + +
2 1 1 1 2 + +
3 1 1 2 1 + − − −
4 1 1 2 2 + + +
5 1 2 1 1 + +
6 1 2 1 2 −
7 1 2 2 1 − − −
8 1 2 2 2 + +
9 2 1 1 1 − − + −
10 2 1 1 2 − − −
11 2 1 2 1 − − − − −
12 2 1 2 2 − − + −
13 2 2 1 1 + + +
14 2 2 1 2 + +
15 2 2 2 1 + − − −
16 2 2 2 2 + + +

Table 2
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