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Abstract

We initiate the study of double outer-independent domination

in graphs. A vertex of a graph is said to dominate itself and all of its

neighbors. A double outer-independent dominating set of a graph G

is a set D of vertices of G such that every vertex of G is dominated

by at least two vertices of D, and the set V (G) \D is independent.

The double outer-independent domination number of a graph G

is the minimum cardinality of a double outer-independent domi-

nating set of G. First we discuss the basic properties of double

outer-independent domination in graphs. We find the double outer-

independent domination numbers for several classes of graphs. Next

we prove lower and upper bounds on the double outer-independent

domination number of a graph, and we characterize the extremal

graphs. Then we study the influence of removing or adding vertices

and edges. We also give Nordhaus-Gaddum type inequalities.

Keywords: double outer-independent domination, double domina-

tion, domination.

AMS Subject Classification: 05C05, 05C69.

1 Introduction

Let G = (V,E) be a graph. The number of vertices of G we denote by n
and the number of edges we denote by m, thus |V (G)| = n and |E(G)|
= m. The complement of G, denoted by Ḡ, is a graph which has the
same vertices as G, and in which two vertices are adjacent if and only if
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they are not adjacent in G. By the neighborhood of a vertex v of G we
mean the set NG(v) = {u ∈ V (G) : uv ∈ E(G)}. The degree of a vertex v,
denoted by dG(v), is the cardinality of its neighborhood. By a leaf we
mean a vertex of degree one, while a support vertex is a vertex adjacent
to a leaf. We say that a support vertex is strong (weak, respectively) if it
is adjacent to at least two leaves (exactly one leaf, respectively). We say
that a vertex is isolated if it has no neighbor, while it is universal if it is
adjacent to each other vertex. Let δ(G) mean the minimum degree among
all vertices of G. The path (cycle, respectively) on n vertices we denote
by Pn (Cn, respectively). A wheel Wn, where n ≥ 4, is a graph with n
vertices, formed by connecting a vertex to all vertices of a cycle Cn−1. The
distance between two vertices of a graph is the number of edges in a shortest
path connecting them. The eccentricity of a vertex is the greatest distance
between it and any other vertex. The diameter of a graph G, denoted by
diam(G), is the maximum eccentricity among all vertices of G. By Kp,q we
denote a complete bipartite graph with partite sets of cardinalities p and q.
By a star we mean the graph K1,m, where m ≥ 2. Let uv be an edge of
a graph G. By subdividing the edge uv we mean removing it, and adding
a new vertex, say x, along with two new edges ux and xv. By a subdivided
star we mean a graph obtained from a star by subdividing each one of its
edges. Generally, let Kt1,t2,...,tk denote the complete multipartite graph
with vertex set S1 ∪S2 ∪ . . .∪Sk, where |Si| = ti for positive integers i ≤ t.
We say that a subset of V (G) is independent if there is no edge between any
two vertices of this set. The independence number of a graph G, denoted
by α(G), is the maximum cardinality of an independent subset of the set
of vertices of G. The clique number of G, denoted by ω(G), is the number
of vertices of a greatest complete graph which is a subgraph of G.
A vertex of a graph is said to dominate itself and all of its neighbors.

A subset D ⊆ V (G) is a dominating set of G if every vertex of G is domi-
nated by at least one vertex of D, while it is a double dominating set of G
if every vertex of G is dominated by at least two vertices of D. The dom-
ination (double domination, respectively) number of G, denoted by γ(G)
(γd(G), respectively), is the minimum cardinality of a dominating (double
dominating, respectively) set of G. Double domination in graphs was intro-
duced by Harary and Haynes [4], and further studied for example in [1–3,
5, 7, 8]. For a comprehensive survey of domination in graphs, see [6].
A subset D ⊆ V (G) is a double outer-independent dominating set,

abbreviated DOIDS, of G if every vertex of G is dominated by at least two
vertices of D, and the set V (G) \ D is independent. The double outer-
independent domination number of a graph G, denoted by γoi

d (G), is the
minimum cardinality of a double outer-independent dominating set of G.
A double outer-independent dominating set of G of minimum cardinality
is called a γoi

d (G)-set.
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We initiate the study of double outer-independent domination in graphs.
First we discuss the basic properties of double outer-independent domina-
tion in graphs. We find the double outer-independent domination numbers
for several classes of graphs. Next we prove some lower and upper bounds
on the double outer-independent domination number of a graph, and we
characterize the extremal graphs. Then we study the influence of remov-
ing or adding vertices and edges. We also give Nordhaus-Gaddum type
inequalities.

2 Results

Since the one-vertex graph, as well as all graphs with an isolated vertex,
does not have neither a double outer-independent dominating set nor a dou-
ble dominating set, in this paper we consider only graphs without isolated
vertices.
We begin with the following straightforward observations.

Observation 1 For every graph G we have γoi
d (G) ≥ γd(G).

Observation 2 Every leaf of a graph G is in every DOIDS of G.

Observation 3 Every support vertex of a graph G is in every DOIDS of G.

Observation 4 If n ≥ 2 is an integer, then

(i) γoi
d (Kn) = max{n− 1, 2};

(ii) γoi
d (Pn) = ⌊(2n+ 1)/3⌋+ 1.

Let us observe that for any non-negative integer there exists a graph
such that the difference between its double outer-independent domination
and double domination numbers equals that non-negative integer.

Observation 5 For every integer n ≥ 3 we have γoi
d (Kn) = γd(Kn)+n−3.

Observation 6 If n ≥ 3 is an integer, then γoi
d (Cn) = ⌊(2n− 1)/3⌋+ 1.

Observation 7 For every integer n ≥ 4 we have γoi
d (Wn) = ⌊n/2⌋+ 1.

Observation 8 Let p and q be integers such that p ≤ q. Then

γoi
d (Kp,q) =

{

q + 1 if p = 1;
p+ 1 if p ≥ 2.

Observation 9 Let k ≥ 3 be an integer, and let t1, t2, . . . , tk be positive
integers. Then γoi

d (Kt1,t2,...,tk) =
∑k

i=1 ti −max{t1, t2, . . . , tk}.
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Observation 10 For every disjoint graphs G1, G2, . . . , Gk we have γ
oi
d (G1

∪G2 ∪ . . . ∪Gk) = γoi
d (G1) + γoi

d (G2) + . . .+ γoi
d (Gk).

Since the complement of every double outer-independent dominating
set is independent, we get the following lower bound on γoi

d (G) for any
graph G.

Observation 11 For every graph G we have γoi
d (G) ≥ n− α(G).

We have the following lower bound on the double outer-independent
domination number of a graph in terms of its clique number.

Fact 12 For every graph G we have γoi
d (G) ≥ ω(G)− 1.

Proof. Let D be a γoi
d (G)-set, and let A be a maximum clique in G. Since

V (G) \D is independent, we have |(V (G) \D) ∩A| ≤ 1. This implies that
|D| ≥ |A| − 1. We now get γoi

d (G) = |D| ≥ |A| − 1 = ω(G)− 1.

Let us observe that the bound from the previous proposition is tight.
For n ≥ 3 we have γoi

d (Kn) = n− 1 = ω(Kn)− 1.
Now let us observe that for any non-negative integer there exists a graph

such that the difference between its double outer-independent domination
number and clique number equals that non-negative integer.

Observation 13 For every positive integerm we have γoi
d (K1,m) = ω(K1,m)

+m− 1.

We now prove that the double outer-independent domination number
of a graph is greater than or equal to the minimum degree among all its
vertices.

Fact 14 For every graph G we have γoi
d (G) ≥ δ(G).

Proof. Let D be any γoi
d (G)-set. If D = V (G), then obviously the result

is true. Now assume that D 6= V (G). Let x be a vertex which does not
belong to D. Since V (G) \D is independent, all neighbors of x belong to
the set D. Thus |D| ≥ dG(x). By the definition we have δ(G) ≤ dG(x).
Therefore γoi

d (G) = |D| ≥ dG(x) ≥ δ(G).

Since every double outer-independent dominating set has at least two
vertices, and all vertices of a graph form a double outer-independent dom-
inating set, we have the following bounds on the double outer-independent
domination number of a graph.

Observation 15 For every graph G we have 2 ≤ γoi
d (G) ≤ n.
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We now characterize all graphs which attain the lower bound from the
previous observation. For this purpose we introduce a family G = {Gk :
k is a non-negative integer} of graphs, an element of which is given in Fig-
ure 1. A graph Gk has k + 2 vertices.

u v

a1

ak

Figure 1: A graph Gk of the family G

Theorem 16 Let G be a graph. We have γoi
d (G) = 2 if and only if G ∈ G.

Proof. It is easy to see that {u, v} is a DOIDS of any graph of the family G.
This implies that γoi

d (Gk) = 2, for every graph Gk of the family G.
Now assume that for some graph G we have γoi

d (G) = 2. Let D be
a γoi

d (G)-set. The vertices of D we denote by u and v. Since D is a double
dominating set, we conclude that the vertices u and v are adjacent, and ev-
ery vertex of V (G) \ D is adjacent to both vertices u and v. Moreover,
there is no edge between any two vertices of V (G)\D as the set D is outer-
independent. It is easy to observe that G is a graph of the form presented
in Figure 1.

We now characterize the graphs attaining the upper bound from Obser-
vation 15, that is, the graphs with double outer-independent domination
number equaling the number of vertices.

Theorem 17 Let G be a graph. Then γoi
d (G) = n if and only if every

vertex of G is a leaf or a support vertex.

Proof. The sufficiency is true by Observations 1 and 2. Now assume that
some vertex of a graph G, say x, is neither a leaf nor a support vertex.
Thus x has at least two neighbors. Moreover, each of these neighbors
has a neighbor different from x since x is not a support vertex. It is not
difficult to observe that V (G) \ {x} is a DOIDS of the graph G. Therefore
γoi
d (G) ≤ n− 1 < n.

Corollary 18 Let G be a graph. If some vertex of G is neither a leaf nor
a support vertex, then γoi

d (G) ≤ n− 1.

We now characterize the graphs attaining the bound from the previous
corollary.
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Theorem 19 Let G be a graph. We have γoi
d (G) = n− 1 if and only if at

least one vertex of G is neither a leaf nor a support vertex, and the subgraph
of G induced by the vertices which are neither leaves nor support vertices
is a complete graph or a path on three vertices such that the central vertex
has exactly two neighbors in the graph G.

Proof. Let G be a graph such that its subgraph induced by the vertices
which are neither leaves nor support vertices is a complete graph or a path
on three vertices such that the central vertex has exactly two neighbors in
the graph G. First assume that it is a path P3, say abc. It is not difficult to
observe that V (G) \ {b} is a DOIDS of the graph G. Thus γoi

d (G) ≤ n− 1.
Now let D be any γoi

d (G)-set. By Observations 2 and 3, all leaves and
support vertices belong to the set D. Moreover, the vertex b has to be
dominated twice, thus at least two of the vertices a, b and c belong to the
set D. Therefore γoi

d (G) ≥ n − 1. Now assume that the subgraph of G
induced by the vertices which are neither leaves nor support vertices is
a complete graph. Let x be any vertex of this subgraph. Let us observe
that V (G)\{x} is a DOIDS of the graph G. Thus γoi

d (G) ≤ n−1. Now letD
be any γoi

d (G)-set. By Observations 2 and 3, all leaves and support vertices
belong to the set D. Moreover, since V (G) \ D is independent, at most
one of the remaining vertices does not belong to the set D. Therefore
γoi
d (G) ≥ n− 1. We now conclude that γoi

d (G) = n− 1.
Now assume that for some graph G we have γoi

d (G) = n − 1. Suppose
that the subgraph of G induced by the vertices which are neither leaves
nor support vertices, say H, is neither a complete graph nor a path on
three vertices such that the central vertex has exactly two neighbors in
the graph G. Thus |V (H)| ≥ 2. Let us observe that there exist two
nonadjacent vertices of H, say x and y, such that no common neighbor of x
and y has degree two in the graph G. It is not very difficult to observe that
V (G)\{x, y} is a DOIDS of the graph G. Therefore γoi

d (G) ≤ n−2 < n−1,
a contradiction.

We have the following upper bound on the double outer-independent
domination number of a tree in terms of its independence number and the
number of support vertices.

Theorem 20 For every tree T of order at least three with s support vertices
we have γoi

d (T ) ≤ α(T ) + s.

Proof. Let n mean the number of vertices of the tree T . We proceed
by induction on this number. If diam(T ) = 1, then T = P2. We have
γoi
d (P2) = 2 < 1+2 = α(P2)+s. Now assume that diam(T ) = 2. Thus T is
a star. We have γoi

d (T ) = n = n−1+1 = α(T )+s. Now let us assume that

6



diam(T ) = 3. Thus T is a double star. We have γoi
d (T ) = n = n − 2 + 2

= α(T ) + s.
Now assume that diam(T ) ≥ 4. Thus the order n of the tree T is at

least five. We obtain the result by the induction on the number n. Assume
that the theorem is true for every tree T ′ of order n′ < n.
First assume that some support vertex of T , say x, is strong. Let y

be a leaf adjacent to x. Let T ′ = T − y. We have s′ = s. Let D′ be
any γoi

d (T ′)-set. By Observation 3 we have x ∈ D′. It is easy to see that
D′ ∪ {y} is a DOIDS of the tree T . Thus γoi

d (T ) ≤ γoi
d (T ′) + 1. Let us

observe that there exists a maximum independent set of T ′ that does not
contain the vertex x. Let A′ be such a set. It is easy to observe that
D′ ∪ {y} is an independent set of the tree T . Thus α(T ) ≥ α(T ′) + 1. We
now get γoi

d (T ) ≤ γoi
d (T ′) + 1 ≤ α(T ′) + s′ + 1 = α(T ′) + s+ 1 ≤ α(T ) + s.

Henceforth, we can assume that all support vertices of T are weak.
We now root T at a vertex r of maximum eccentricity diam(T ). Let t

be a leaf at maximum distance from r, v be the parent of t, u be the parent
of v, and w be the parent of u in the rooted tree. By Tx we denote the
subtree induced by a vertex x and its descendants in the rooted tree T .
Assume that dT (u) ≥ 3. Let T ′ = T − Tv. We have s

′ = s − 1. Let
D′ be any γoi

d (T ′)-set. Obviously, D′ ∪ {v, t} is a DOIDS of the tree T .
Thus γoi

d (T ) ≤ γoi
d (T ′) + 2. Now let A′ be a maximum independent set

of T ′. It is easy to see that D′ ∪ {t} is an independent set of the tree T .
Thus α(T ) ≥ α(T ′) + 1. We now get γoi

d (T ) ≤ γoi
d (T ′) + 2 ≤ α(T ′) + s′ + 2

≤ α(T ) + s.
Now assume that dT (u) = 2. First assume that there is a child of w

other than u, say k, such that the distance of w to the most distant vertex
of Tk is one or three. It suffices to consider only the possibilities when Tk

is a path P3, or k is a leaf. Let T
′ = T − Tu. We have s

′ = s − 1. Let
us observe that there exists a γoi

d (T ′)-set that contains the vertex w. Let
D′ be such a set. It is easy to observe that D′ ∪ {v, t} is a DOIDS of the
tree T . Thus γoi

d (T ) ≤ γoi
d (T ′)+2. Now let A′ be a maximum independent

set of the tree T ′. Obviously, D′ ∪ {t} is an independent set of T . Thus
α(T ) ≥ α(T ′) + 1. We now get γoi

d (T ) ≤ γoi
d (T ′) + 2 ≤ α(T ′) + s′ + 2

≤ α(T ) + s.
Now assume that for every child of w other than u, say k, the distance

of w to the most distant vertex of Tk is two. It suffices to consider only
the possibility when k is a support vertex of degree two. Let T ′ = T − Tv.
We have s′ = s. Let D′ be any γoi

d (T ′)-set. By Observations 2 and 3 we
have u, k, w ∈ D′. Let us observe that D′ \ {u} ∪ {v, t} is a DOIDS of the
tree T . Thus γoi

d (T ) ≤ γoi
d (T ′)+1. Now let A′ be a maximum independent

set of T ′. It is easy to see that D′ ∪{t} is an independent set of the tree T .
Thus α(T ) ≥ α(T ′) + 1. We now get γoi

d (T ) ≤ γoi
d (T ′) + 1 ≤ α(T ′) + s′ + 1

≤ α(T ) + s.
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We have the following bounds on the double outer-independent domi-
nation number of a graph in terms of its order and size.

Proposition 21 For every graph G we have

2n− 3−
√

(2n− 3)2 − 8(m− 1)

2
≤ γ

oi

d (G) ≤
2n− 3 +

√

(2n− 3)2 − 8(m− 1)

2
.

Proof. Let D be a γoi
d (G)-set. Let t denote the number of edges between

the vertices of D and the vertices of V (G)\D. We have m ≤ t+ |E(G[D])|.
Obviously, t ≤ |D|·|V (G)\D|. Notice that |E(G[D])| ≤ (|D|−1)(|D|−2)/2.
Now simple calculations imply the result.

We now study the influence of the removal of a vertex of a graph on its
double outer-independent domination number.

Proposition 22 Let G be a graph, and let v be a vertex of G. Assume
that G− v has no isolated vertex. Then γoi

d (G)− 2 ≤ γoi
d (G− v) ≤ γoi

d (G)
+dG(v)− 1.

Proof. Let D be any γoi
d (G)-set. If v /∈ D, then it is easy to see that D is

a DOIDS of the graph G−v. Now assume that v ∈ D. Let v1, v2, . . . , vdG(v)

be the neighbors of v. Let i ∈ {1, 2, . . . , dG(v)}. Let xi be a neighbor
of vi different from v. If vi ∈ D, then let ui mean xi, otherwise let it
mean vi. Let us observe that D∪{u1, u2, . . . , udG(v)}\{v} is a DOIDS of the
graph G. Thus γoi

d (G−v) ≤ |D∪{u1, u2, . . . , udG(v)}\{v}| ≤ |D|+dG(v)−1
= γoi

d (G) + dG(v) − 1. Now let D′ be any γoi
d (G − v)-set. If some vertex

of NG(v) belongs to the set D
′, then it is easy to see that D′ ∪ {v} is

a DOIDS of the graph G. Now assume that no vertex of NG(v) belongs
to the set D′. Let x be any neighbor of v in G. It is easy to observe that
D′ ∪{v, x} is a DOIDS of the graph G. Therefore γoi

d (G) ≤ γoi
d (G− v)+ 2.

Let us observe that the bounds from the previous proposition are tight.
For the lower bound, consider the graphs Gk of the form presented in
Figure 2. We have γoi

d (Gk) = 12k = 12k−2+2 = γoi
d (Gk−vi)+2. For the

upper bound, let G be a graph obtained from a star K1,m by subdividing
every edge thrice. The vertex of minimum eccentricity we denote by x.
We have γoi

d (G − x) = γoi
d (mP4) = m · γoi

d (P4) = 4m = 3m + 1 + m − 1
= γoi

d (G) + dG(x)− 1.
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v1 v2 vk

Figure 2: A graph Gk having 13k vertices

We now show that for any non-negative integer there exists a graph such
that the removal of some its vertex increases the double outer-independent
domination number by that non-negative integer.

Fact 23 For every non-negative integer k there exists a graph G such that
for some vertex v of G we have γoi

d (G− v)− γoi
d (G) = k.

Proof. Let m = k + 2. Let G be a graph obtained from a star K1,m

by subdividing every edge twice. The vertex of minimum eccentricity we
denote by x. It is easy to see that γoi

d (G) = 2m+2. We have G−x = mP3.
We now get γoi

d (G− x)− γoi
d (G) = γoi

d (mP3)− γoi
d (K1,m) = 3m− (2m+2)

= m− 2 = k.

We now study the influence of the removal of an edge of a graph on its
double outer-independent domination number.

Proposition 24 Let G be a graph. For every edge e of G we have

γoi
d (G− e) ∈ {γoi

d (G)− 1, γoi
d (G), γoi

d (G) + 1}.

Proof. Let D be a γoi
d (G)-set, and let e = xy be an edge of G. Since the

set V (G) \ D is independent, some of the vertices x and y belongs to the
set D. Without loss of generality we may assume that x ∈ D. If y ∈ D,
then it is easy to see that D is a DOIDS of the graph G− e. If y /∈ D, then
D ∪ {y} is a DOIDS of G− e. Thus γoi

d (G − e) ≤ γoi
d (G) + 1. Now let D′

be a γoi
d (G− e)-set. If some of the vertices x and y belongs to the set D′,

then D′ is a DOIDS of the graph G. If none of the vertices x and y belongs
to the set D′, then it is easy to observe that D′ ∪ {x} is a DOIDS of the
graph G. Therefore γoi

d (G) ≤ γoi
d (G− e) + 1.
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Let us observe that the bounds following from the previous proposition
are tight. For the lower bound, let us remove an edge of the complete
graph K4. For the upper bound, consider a path P6 and its central edge.
Similarly, adding an edge has the following influence on the double

outer-independent domination number of a graph.

Proposition 25 Let G be a graph. If e /∈ E(G), then

γoi
d (G+ e) ∈ {γoi

d (G)− 1, γoi
d (G), γoi

d (G) + 1}.

We now give Nordhaus-Gaddum type inequalities for the sum of the
double outer-independent domination number of a graph and its comple-
ment.

Theorem 26 For every graph G we have n− 1 ≤ γoi
d (G) + γoi

d (Ḡ) ≤ 2n.

Proof. Let D be any γoi
d (G)-set. Since V (G) \ D is independent, the

vertices of V (G) \ D form a clique in Ḡ. Let D̄ be any γoi
d (Ḡ)-set. The

vertices of V (G) \D form a clique in Ḡ, thus at most one of them does not
belong to D̄ as V (Ḡ) \ D̄ is independent. Therefore |D̄| ≥ |V (G) \D| − 1.
We now get γoi

d (G) + γoi
d (Ḡ) ≥ |D|+ |V (G) \D| − 1 = n− 1.

Obviously, γoi
d (G) ≤ n and γoi

d (Ḡ) ≤ n. Thus γoi
d (G) + γoi

d (Ḡ) ≤ 2n.

Now let us observe that the bounds from the previous theorem are
tight. For the lower bound, consider the graphs H and H̄ given in Fig-
ure 3. Let us observe that H and H̄ are isomorphic. It is not difficult to
see that {v1, v2, v3, v4} is a DOIDS of the graph H, and {u2, u3, u4, u5} is
a DOIDS of the graph H̄. Therefore γoi

d (H) + γoi
d (H̄) ≤ |{v1, v2, v3, v4}|

+|{u2, u3, u4, u5}| = 8 = n−1. On the other hand, by Theorem 26 we have
γoi
d (H) + γoi

d (H̄) ≥ n − 1. Therefore γoi
d (H) + γoi

d (H̄) = n − 1. For the
upper bound, consider the path P4 and its complement P̄4 = P4. We have
γoi
d (P4) + γoi

d (P̄4) = 2 · γoi
d (P4) = 8 = 2n.

u4 u3

u5 u2

u1

v4

v1

v2

v3

H

v1 v4

v2 v3

u1

u4

u5

u2

u3

H̄

Figure 3: The graphs H and H̄
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We now prove that the path on four vertices and its complement (which
are isomorphic) are the only graphs which attain the upper bound from
Theorem 26.

Theorem 27 Let G be a graph. We have γoi
d (G)+γoi

d (Ḡ) = 2n if and only
if G = Ḡ = P4.

Proof. Obviously, γoi
d (P4) + γoi

d (P̄4) = 2 · γoi
d (P4) = 2n. Now assume

that for some graph G we have γoi
d (G) + γoi

d (Ḡ) = 2n. This implies that
γoi
d (G) = n and γoi

d (Ḡ) = n. By Theorem 17, every vertex of G is a leaf
or a support vertex, and every vertex of Ḡ is a leaf or a support vertex.
Suppose that some vertex, say x, is simultaneously a leaf and a support
vertex of one of the graphs G or Ḡ, say G. This implies that the component
of G which contains the vertex x is a complete graph on two vertices.
The neighbor of x we denote by y. If G = K2, then Ḡ has an isolated
vertex, a contradiction. Now assume that G 6= K2. Since every component
of G has at least two vertices, we have n ≥ 4. In the graph Ḡ the vertex x
is not a leaf as it has n− 2 neighbors and n− 2 ≥ 2 > 1. Thus x must be
a support vertex of Ḡ. But each neighbor of x in Ḡ is also adjacent to y, so x
is not adjacent to any leaf, and it is not a support vertex, a contradiction.
We now conclude that no vertex is simultaneously a leaf and a support
vertex neither of G nor of Ḡ. Suppose that some vertex, say x, is a leaf of
both graphs G and Ḡ. Since in each one of the graphs G and Ḡ the vertex x
has exactly one neighbor, the graph G (as well as the graph Ḡ) has three
vertices. It is not difficult to verify that then G or Ḡ has an isolated vertex,
and we do not consider such graphs. Therefore every leaf of G is a support
vertex of Ḡ, and every leaf of Ḡ is a support vertex of G. Let us observe
that for every graph, the number of leaves is greater than or equal to the
number of support vertices. This implies that exactly half of all vertices are
leaves of G (and they are support vertices of Ḡ), and the remaining half of
vertices are support vertices of G (and they are leaves of Ḡ). Consequently,
every support vertex is weak. Moreover, the number n = |V (G)| = |V (Ḡ)|
is even. Suppose that n ≥ 6. Thus in G there are at least three leaves,
say a, b and c. The support vertex adjacent to a we denote by x. Since
every support vertex is weak, the vertex x is not adjacent to any one of
the vertices b and c. Thus x (which is a leaf in Ḡ) is adjacent to both
vertices b and c in Ḡ, a contradiction as leaf has only one neighbor. This
implies that n = 4. Since exactly half of all vertices are leaves and half
are support vertices, it is not very difficult to get that G = P4. Obviously,
Ḡ = P̄4 = P4.

Corollary 28 If G is a graph different from P4, then γoi
d (G) + γoi

d (Ḡ)
≤ 2n− 1.
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We now characterize all graphs, which attain the bound from the pre-
vious corollary. For this purpose we introduce a family H = {Hk : k
≥ 3 is an integer} of graphs that can be obtained from a complete graph
on k ≥ 3 vertices by attaching a path on two vertices by joining one of
its vertices to all but one vertex of that complete graph. In Figure 4 we
present a few graphs of the family H.

H3 H4 H5

Figure 4: The graphs H3, H4 and H5 of the family H

Theorem 29 Let G be a graph. We have γoi
d (G) + γoi

d (Ḡ) = 2n− 1 if and
only if G ∈ H or Ḡ ∈ H.

Proof. Assume that a graph G or its complement Ḡ belongs to the fam-
ily H. Without loss of generality we assume that G ∈ H. By Theorem 19
we have γoi

d (G) = n − 1. The leaf of G we denote by x, and its neighbor
we denote by y. Let z be the vertex of G which is not adjacent to y. It is
easy to see that all vertices excluding x and z are leaves of Ḡ. The vertex z
is adjacent to y in Ḡ, thus z is a support vertex of Ḡ. The vertex x is
also a support vertex of Ḡ, as it is adjacent to the remaining leaves in Ḡ.
By Observations 2 and 3, all leaves and support vertices belong to every
double outer-independent dominating set. Thus γoi

d (Ḡ) = n. We now get
γoi
d (G) + γoi

d (Ḡ) = n− 1 + n = 2n− 1.
Now assume that for some graph G we have γoi

d (G) + γoi
d (Ḡ) = 2n− 1.

This implies that γoi
d (G) = n − 1 or γoi

d (Ḡ) = n − 1. Without loss of
generality we assume that γoi

d (G) = n − 1. Consequently, γoi
d (Ḡ) = n.

By Theorem 17, every vertex of Ḡ is a leaf or a support vertex. Suppose
that some vertex, say x, is a leaf of both graphs G and Ḡ. Thus n = 3,
and G or Ḡ has an isolated vertex, a contradiction. Therefore no vertex is
at the same time a leaf of both graphs G and Ḡ. Now suppose that some
component of G is a complete graph on two vertices. Let a denote a vertex
of such component. Since a is a leaf, and no vertex is a leaf of both graphs G
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and Ḡ, we conclude that a is not a leaf of Ḡ. Therefore it is a support vertex
of Ḡ. This implies that some vertex of G different from a is adjacent to all
vertices of G excluding a, a contradiction. We conclude that no component
of G is a complete graph on two vertices. Now suppose that G has at least
three support vertices, say a, b and c. Let d (e, f , respectively) denote
a leaf adjacent to a (b, c, respectively). Since every vertex of Ḡ is a leaf or
a support vertex, the graph Ḡ has some leaf, say x. Thus the vertex x has
n− 2 neighbors in G, a contradiction as every vertex of G is adjacent to at
most one of the vertices d, e and f . Therefore G has at most two support
vertices. Now suppose that some support vertex of G, say x, is strong. Let
a denote a leaf adjacent to x. Since a is a leaf, and no vertex is a leaf of
both graphs G and Ḡ, we conclude that a is not a leaf of Ḡ. Therefore it is
a support vertex of Ḡ. This implies that some vertex of G different from a
is adjacent to all vertices of G excluding a. This is a contradiction as every
vertex of G is adjacent to a if and only if it is adjacent to b. Therefore
every support vertex of G is weak. First assume that G has exactly two
support vertices. Thus G has exactly two leaves, say x and y. Since no
vertex is a leaf of both graphs G and Ḡ, the vertices x and y are support
vertices of Ḡ. Let a denote a leaf adjacent to x in Ḡ, and let b denote a leaf
adjacent to y in Ḡ. Thus a (b, respectively) is adjacent to every vertex
in G excluding x (y, respectively). Therefore in G the vertex x is adjacent
to b, and y is adjacent to a. Now let us consider a vertex of G, say u,
which is neither a support vertex nor a leaf. In the graph Ḡ, the vertex u
is a leaf or a support vertex. Since u is adjacent to none of the vertices x
and y in G, it is adjacent to both these vertices in Ḡ. Thus dḠ(u) ≥ 2,
and consequently, u is not a leaf of Ḡ. Therefore u is a support vertex
of Ḡ. This is a contradiction as a and b are the only leaves of Ḡ, and x
and y are the only support vertices of Ḡ. Now assume that G has exactly
one support vertex, say x. The leaf adjacent to x we denote by y. Since
γoi
d (G) = n − 1, by Theorem 19, the subgraph of G, say H, induced by
the vertices which are neither leaves nor support vertices is a path on three
vertices or a complete graph. If H contains only one vertex, then G = P3.
Thus every vertex of G is a leaf or a support vertex, a contradiction. Now
assume that H = K2. This implies that every vertex of G is a leaf or
a support vertex, or G has a universal vertex, that is, Ḡ has an isolated
vertex, a contradiction. Now assume that H is a path P3, say abc. Since
none of the vertices a, b and c is a leaf or a support vertex, the vertices a
and c are adjacent to the vertex x. We have bx /∈ E(G), otherwise x is an
isolated vertex of Ḡ. It is not difficult to verify that γoi

d (Ḡ) = 4. We get
γoi
d (G) + γoi

d (Ḡ) = 4 + 4 = 2n − 2 < 2n − 1, a contradiction. Now assume
that H is a complete graph on at least three vertices. Suppose that at
least two vertices of H, say a and b, are not adjacent to x in G. Therefore
x is adjacent to both a and b in the graph Ḡ. Thus x is not a leaf, and
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consequently, it is a support vertex of Ḡ. Consequently, some vertex of G
is adjacent to all other vertices excluding a. This is a contradiction as no
vertex is adjacent in G to both vertices a and y, and the vertices a and y
are not adjacent. We now conclude that in G the vertex x is adjacent to at
least |V (H)|−1 vertices of H. Let us observe that it cannot be adjacent to
every vertex of H, otherwise x is an isolated vertex of Ḡ, a contradiction.
Therefore in G the vertex x is adjacent to all but one vertex of H. We now
conclude that G ∈ H.

Corollary 30 If G 6= P4, G /∈ H and Ḡ /∈ H, then γoi
d (G) + γoi

d (Ḡ)
≤ 2n− 2.

We now improve the lower bound from Theorem 26.

Theorem 31 For every graph G with l leaves we have γoi
d (G) + γoi

d (G)
≥ n+ l − 2.

Proof. LetD and D̄ be any γoi
d (G)-set and γoi

d (Ḡ)-set, respectively. If some
leaf of G does not belong to the set D̄, then γoi

d (Ḡ) ≥ n − 2, and we
easily obtain the result. Now assume that all leaves of G belong to the
set D̄. Since V (G) \ D is independent, the vertices of V (G) \ D form
a clique in Ḡ. Consequently, at most one of them does not belong to D̄ as
V (Ḡ) \ D̄ is independent. Therefore |D̄| ≥ |V (G) \D|+ l− 1. We now get
γoi
d (G) + γoi

d (Ḡ) ≥ |D|+ |V (G) \D|+ l − 1 > n+ l − 2.
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